999 resultados para inorganic element
Resumo:
Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.
Resumo:
Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.
Resumo:
A new multifunctional multilayer films consisting of tris(2,2'-bipyridyl)ruthenium(II) (Rubpy) and sodium decatungstate (W-10) have been prepared by the layer-by-layer (LbL) self-assembly method on ITO substrate. X-ray photoelectron spectra (XPS) confirmed the existence of W10 and Rubpy. Cyclic voltammetry (CV) and UV-Vis spectroscopy demonstrated the uniform assembly of (W-10/Rubpy) multilayer films. The multilayer films possess electrocatalytic activities on the reduction of iodate and oxidation of oxalate. Moreover, the films exhibited electrochemiluminescence (ECL) with tripropylamine (abbreviated as TPA) as the coreactant and the ECL response was proportional to the number of (W-10/Rubpy) layers. These characteristics of the multilayer films might find potential applications in the field of sensors and materials fields.
Resumo:
A new compound, (C6H6N3)(7)((PMo12O40)-O-m)(PMo(v)Mo(11)(m)O40) (.) 2CH(3)CH(2)OH (.) 5H(2)O, was synthesized and characterized by means of elemental analyses, IR spectroscopy, H-1 NMR spectroscopy and single crystal X-ray diffraction. This is the first example of benzotriazole-polyoxometalates species. The compound crystallized in a triclinic space group P (1) over bar with a = 1. 8378 (4) nm. b = 1. 9078 (4) nm. c = 2.1037 (4) nm. alpha = 63.41 (3)degrees. beta = 64.31 (3)degrees. gamma = 68.38 (3)degrees. V = 5.803 (2) nm(3). Z = 2. R-1 = 0.0486, wR(2) = 0.1357. The X-ray crystallographic study showed that the crystal structure was constructed by electrostatic interactions and hydrogen bonds between dodecamolybdophosphorate anions and protonated benzotriazole cations. The electrochemical behavior and the reduction of nitrite and hydrogen peroxide clectrocatalyzed by the title compound were studied.
Resumo:
An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts. Our calculated values of lattice energies agree well with available experimental and theoretical values for diverse ionic crystals. This method, which requires detailed crystallographic information and elaborate computation, might be extended and possibly yield further insights with respect to bond properties of materials.
Resumo:
Water soluble conducting polyaniline with electrical conductivity of 10(-1)-10(-2) S/cm was prepared employing dopant induced water solubility technology. The water resistance of the conducting film was significantly improved employing,sol-gel hybrids method, especially when the conductive polyaniline loading was below 30 wt%. The reason for the improvement is that the conducting polyaniline chains are confined in a stable inorganic network.
Resumo:
A novel hybrid photochromic composite film composed of Preyssler's heteropoly acid H-12[EuP5W30O110] (EuP5W30) and polyvinylpyrrolidone (PVP) was prepared by dip-coating method. Atomic force microscopy (AFM) was used to investigate the surface topography. The change of characteristic peak in the infrared spectra (IR) was investigated. The TG curve showed three steps of weight loss and approximately revealed the composition of the hybrid film. Ultraviolet-visible adsorption spectra (UV-VIS) and electron resonance spectrum (ESR) were used to investigate the photochromic behavior and mechanism of hybrid film. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(o)-F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent thin film with polyoxometalates (POMs).
Resumo:
In situ synthesis of terbium carboxyl complexes in an organic-inorganic hybrid matrix by a sol-gel process has been proposed. The formation of terbium carboxyl complexes in the hybrid matrix is confirmed by the luminescence spectra and IR spectra. It is observed that the location at the amino group in aminobenzoic acid has a large effect on the luminescence properties and lifetimes. Furthermore, the emission intensity decreases with increasing temperature.
Resumo:
A novel organic-inorganic hybrid complex [(CuCl)(2) (o-phen)](infinity) 1 (o-phen = o-phenanthroline) has been hydrothermally synthesized and structurally characterized by elemental analyses, XPS spectrum, TG analysis, and single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic system, space group P2(1)/n, a = 3.7285(7) Angstrom, b = 19.603(4) Angstrom, c = 16.757(3) Angstrom, beta = 95.83(3)degrees, V = 1218.4(4) Angstrom(3), Z = 4, lambda(MoKalpha) = 0.71073 Angstrom (R(F) = 0.0643 for 2559 reflections). Data were collected on an R-axis RAPID diffractometer at 293 K in the range of 1.60 < θ < 27.48degrees. The title compound exhibits a one-dimensional chain-like scaffolding constructed by the unusual [Cu3Cl3] hexagon motifs by, sharing opposite edges. Only Cu(1) sites of the [Cu3Cl3] hexagon are coordinated with N donors of o-phen groups. Furthermore, the three-dimensional supermolecular architecture is formed by C-H...Cl hydrogen bonds between o-phen groups and CuCl chains.
Resumo:
Organic-inorganic hybrid SiO2 xerogels were prepared by the sol-gel method under various preparation conditions and compositions by using tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (A-PS), (3-glycidoxypropyl) trimethoxysilane (GPS), organic acid (CH3COOH) and inorganic acids (HCl, HNO3, H2SO4) as the main precursors. Luminescence and FT-IR spectra were used to characterize the resulted hybrid SiO2 xerogels. The result of FT-IR spectrum shows that the xerogels are composed of non-crystalline -Si-O-Si- networks containing some organic groups such as -NH, -CH and -OH. Under the excitation of 365 nm, all the hybrid xerogels exhibit strong luminescence in the blue region, but the emission intensity and position depend on the starting precursor compositions to a large extent. Suitable amount of polyethylene glycol (PEG500 and PEG10000) in the hybrid xerogels can enhance the emission intensity. Additionally, the emission intensity of the hybrid xerogels increases with heat treatment temperature in the range of ambient to 200degreesC, and vacuum condition is also able to enhance the emission intensity.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
A novel organic-inorganic hybrid vanadium oxide [V4O10(o-phen)(2)], involving all vanadium atoms present in +5 oxidation, has been hydrothermally synthesized and characterized by elemental analysis, IR, UV-vis, ESR, XPS spectra and TG-DTA thermal analysis. The single-crystal X-ray diffraction shows that the red-brown crystal is formed in the triclinic system, space group P (1) over bar, a = 9.782(2), b = 6.5124(14), c = 19.765(4) Angstrom, alpha = 89.94(2)degrees, beta = 100.66(2)degrees, gamma = 89.86(2)degrees. The title compound exhibits an infinite one-dimensional ladder-type tetravanadate skeleton with organonitrogen donors of o-phenanthroline ligands coordinated directly to the vanadium oxide framework.
Resumo:
Photoluminescent organic-inorganic composite films incorporating the rare-earth-containing polyoxometalate Na-9[EuW10O36] (EW) and poly(allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer self-assembly method. UV-vis spectroscopy and ellipsometry were used to follow the fabrication process of the EW/PAH composite films. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. An average EW/PAH bilayer thickness of ca. 2.1 nm was determined by ellipsometry. In addition, scanning electron microscopy and atomic force microscopy images of the EW/PAH composite films indicate that the film surface is relatively uniform and smooth. The photoluminescent properties of these films were investigated by fluorescence spectroscopy.
Resumo:
A nanoparticulate ferric oxide-copper tris(2,4-di-tert-amylphenoxy)-8-quinolinolylphthalocyanine hybrid ultrathin film was constructed from alternate layers by the Langmuir-Blodgett technique. The composition, morphology and structure of the film were studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, atomic force microscopy, small-angle X-ray diffraction, visible spectroscopy and polarized UV-Vis spectroscopy. All the above analyses suggest that the thin film is a kind of one-dimensional superlattice, composed of organic and inorganic components. The XPS data reveal that the nanoparticulate ferric oxide exists as an alpha-Fe2O3 phase in the films. Gas-sensing measurements show that the hybrid LB film has very fast response-recovery characteristics towards 2 ppm C2H5OH vapor.