7 resultados para inorganic element

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forced vibration field tests and finite element studies have been conducted on Morrow Point (arch) Dam in order to investigate dynamic dam-water interaction and water compressibility. Design of the data acquisition system incorporates several special features to retrieve both amplitude and phase of the response in a low signal to noise environment. These features contributed to the success of the experimental program which, for the first time, produced field evidence of water compressibility; this effect seems to play a significant role only in the symmetric response of Morrow Point Dam in the frequency range examined. In the accompanying analysis, frequency response curves for measured accelerations and water pressures as well as their resonating shapes are compared to predictions from the current state-of-the-art finite element model for which water compressibility is both included and neglected. Calibration of the numerical model employs the antisymmetric response data since they are only slightly affected by water compressibility, and, after calibration, good agreement to the data is obtained whether or not water compressibility is included. In the effort to reproduce the symmetric response data, on which water compressibility has a significant influence, the calibrated model shows better correlation when water compressibility is included, but the agreement is still inadequate. Similar results occur using data obtained previously by others at a low water level. A successful isolation of the fundamental water resonance from the experimental data shows significantly different features from those of the numerical water model, indicating possible inaccuracy in the assumed geometry and/or boundary conditions for the reservoir. However, the investigation does suggest possible directions in which the numerical model can be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.

First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.

Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.

Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative impacts of ambient aerosol particles, or particulate matter (PM), on human health and climate are well recognized. However, owing to the complexity of aerosol particle formation and chemical evolution, emissions control strategies remain difficult to develop in a cost effective manner. In this work, three studies are presented to address several key issues currently stymieing California's efforts to continue improving its air quality.

Gas-phase organic mass (GPOM) and CO emission factors are used in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient organic data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies. Additional laboratory chamber studies confirm that, owing to vapor-phase wall loss, the SOA mass yields currently used in virtually all 3D chemical transport models are biased low by as much as a factor of 4. Furthermore, predictions from the Statistical Oxidation Model suggest that this bias could be as high as a factor of 8 if the influence of the chamber walls could be removed entirely.

Once vapor-phase wall loss has been accounted for in a new suite of laboratory chamber experiments, the SOA parameterizations within atmospheric chemical transport models should also be updated. To address the numerical challenges of implementing the next generation of SOA models in atmospheric chemical transport models, a novel mathematical framework, termed the Moment Method, is designed and presented. Assessment of the Moment Method strengths and weaknesses provide valuable insight that can guide future development of SOA modules for atmospheric CTMs.

Finally, regional inorganic aerosol formation and evolution is investigated via detailed comparison of predictions from the Community Multiscale Air Quality (CMAQ version 4.7.1) model against a suite of airborne and ground-based meteorological measurements, gas- and aerosol-phase inorganic measurements, and black carbon (BC) measurements over Southern California during the CalNex field campaign in May/June 2010. Results suggests that continuing to target sulfur emissions with the hopes of reducing ambient PM concentrations may not the most effective strategy for Southern California. Instead, targeting dairy emissions is likely to be an effective strategy for substantially reducing ammonium nitrate concentrations in the eastern part of the Los Angeles Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study was made of the interaction of phosphate rock and aqueous inorganic orthophosphate, calcium, and hydroxyl ions. A model of the reaction was developed by observing electron diffraction patterns in conjunction with concentration changes of chemical components. The model was applied in explaining the performance of batch suspensions of powdered phosphate rock and packed columns of granular phosphate rock. In both cases the reaction consisted initially of a rapid nucleation phase that occurred in a time period of minutes. In the batch system the calcium phosphate nuclei then ripened into larger micro-crystals of hydroxyapatite, which eventually became indistinguishable from the original phosphate rock surface. During column operation the high supersaturation ratio that existed after the rapid nucleation phase resulted in a layer of small nuclei that covered a slowly growing hydroxyapatite crystal.

The column steady-state rate constant was found to increase with increasing temperature, pH, and fluoride concentration, and to decrease with increasing concentrations of magnesium sulfate, ammonium chloride, and bicarbonate ion.

An engineering feasibility study indicated that, based on economic considerations, nucleation of apatite on phosphate rock ore has a potential use as a wastewater phosphate removal treatment process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.

The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses simulations of earthquake ground motions using prescribed ruptures and dynamic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical modeling of earthquake sources. This technique allows efficient implementation of both prescribed ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solution of the three-dimensional, dynamic elasticity equation uses well known finite-element techniques. We employ parallel processing to efficiently compute the ground motions in domains containing millions of degrees of freedom.

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions to five earthquake source parameters for hypothetical events on a strike-slip fault (Mw 7.0 to 7.1) and a thrust fault (Mw 6.6 to 7.0). The directivity of the ruptures creates large displacement and velocity pulses in the ground motions in the forward direction. We found a good match between the severity of the shaking and the shape of the near-source factor from the 1997 Uniform Building Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults the peak displacement and velocities occur up-dip from the region with the peak near-source factor. We assert that a simple modification to the formulation of the near-source factor improves the match between the severity of the ground motion and the shape of the near-source factor.

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what constraints must be imposed on the coefficient of friction to produce realistic ruptures under the application of reasonable shear and normal stress distributions with depth. We found that variation of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the rupture encountered changes in the stress field. Including such behavior in prescribed ruptures would yield more realistic ground motions.