973 resultados para hydroxyl
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
RATIONALE: Oxazolines have attracted the attention of researchers worldwide due to their versatility as carboxylic acid protecting groups, chiral auxiliaries, and ligands for asymmetric catalysis. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of five 2-oxazoline derivatives has been conducted, in order to understand the influence of the side chain on the gas-phase dissociation of these protonated compounds under collision-induced dissociation (CID) conditions. METHODS: Mass spectrometric analyses were conducted in a quadrupole time-of-flight (Q-TOF) spectrometer fitted with electrospray ionization source. Protonation sites have been proposed on the basis of the gas-phase basicity, proton affinity, atomic charges, and a molecular electrostatic potential map obtained on the basis of the quantum chemistry calculations at the B3LYP/6-31 + G(d, p) and G2(MP2) levels. RESULTS: Analysis of the atomic charges, gas-phase basicity and proton affinities values indicates that the nitrogen atom is a possible proton acceptor site. On the basis of these results, two main fragmentation processes have been suggested: one taking place via neutral elimination of the oxazoline moiety (99 u) and another occurring by sequential elimination of neutral fragments with 72 u and 27 u. These processes should lead to formation of R+. CONCLUSIONS: The ESI-MS/MS experiments have shown that the side chain could affect the dissociation mechanism of protonated 2-oxazoline derivatives. For the compound that exhibits a hydroxyl at the lateral chain, water loss has been suggested to happen through an E2-type elimination, in an exothermic step. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Five cucurbitane-type triterpenes (1-5), previously isolated from the African medicinal plant Momordica balsamina, along with five ester derivatives (6-10) of karavilagenin C (2), were evaluated for their potential schistosomicidal activity against Schistosoma mansoni adult worms. The natural compounds were isolated from the ethyl acetate-soluble fraction of the methanol extract of the aerial parts of M. balsamina. In a preliminary study, a significant schistosomicidal activity was observed for both the crude methanol extract and the ethyl acetate fraction. The compounds responsible for the activity were found to be balsaminol F (1) and karavilagenin C (2) with LC50 values of 14.7 +/- 1.5 and 28.9 +/- 1.8 mu M, respectively, after 24 h of incubation (positive control praziquantel, LC50 = 1.2 +/- 0.1 mu M). Both compounds (1, 2), at 10-50 mu M, induced significant reductions in the motor activity of the worms and significantly decreased the egg production. Furthermore, they were able (at 10-100 mu M) to separate the adult worm pairs into male and female after 24 h. Compounds 3-5, bearing a sugar moiety as a substituent, and the acylated derivatives of karavilagenin C (6-10) were inactive, suggesting that the presence of free hydroxyl groups in the tetracyclic skeleton might be important for the activity. A correlation between activity and the molecular volume/weight of compounds was also found.
Resumo:
We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]
Resumo:
Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.