891 resultados para hydrogen malonates
Development of a hydrogen-oxygen internal combustion engine auxiliary electric power supply system /
Resumo:
"No. FR-91565-430-1."
Resumo:
"Contract AEC at (11-1) 34 Project 93, April 1963."
Resumo:
"References": p. 63-72.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Accompanied by "Supplement [no.1]- " (V.) Published: Pittsburgh, Markowitz and Haas, 1951-
Resumo:
"August 1956."
Resumo:
"September 2004"
Resumo:
Includes appendix and bibliographies.
Resumo:
The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Multi-layer hydrogen storage thin films with Mg and MmNi(3.5)(CoAlMn)(1.5) (here Mm denotes La-rich mischmetal) as alternative layers were prepared by direct current magnetron sputtering. Transmission electron microscopy investigation shows that the microstructure of the MmNi(3.5)(CoAlMn)(1.5) and Mg layers are significantly different although their deposition conditions are the same. The MmNi(3.5)(CoAlMn)(1.5) layer is composed of two regions: one is an amorphous region approximately 4 nm thick at the bottom of the layer and the other is a nanocrystalline region on top of the amorphous region. The Mg layer is also composed of two regions: one is a randomly orientated nanocrystalline region 50 nm thick at the bottom of the layer and the other is a columnar crystallite region on top of the nanocrystalline region. These Mg columnar crystallites have their [001] directions parallel to the growth direction and the average lateral size of these columnar crystallites is about 100 nm. A growth mechanism of the multi-layer thin films is discussed based on the experiment results. Wiley-Liss, Inc.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.