901 resultados para frequency-domain spectroscopy, photon migration, absorption, reduced scattering, Intralipid, temperature measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Wiener-Hammerstein (W-H) channel estimation algorithm for Long-Term Evolution (LTE) systems. The LTE standard provides known data as pilot symbols and exploits them through coherent detection to improve system performance. These drivers are placed in a hybrid way to cover up both time and frequency domain. Our aim is to adapt the W-H equalizer (W-H/E) to LTE standard for compensation of both linear and nonlinear effects induced by power amplifiers and multipath channels. We evaluate the performance of the W-H/E for a Downlink LTE system in terms of BLER, EVM and Throughput versus SNR. Afterwards, we compare the results with a traditional Least-Mean Square (LMS) equalizer. It is shown that W-H/E can significantly reduce both linear and nonlinear distortions compared to LMS and improve LTE Downlink system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry's standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device.^ This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. ^ In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. ^ The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescent proteins are an essential tool in many fields of biology, since they allow us to watch the development of structures and dynamic processes of cells in living tissue, with the aid of fluorescence microscopy. Optogenectics is another technique that is currently widely used in Neuroscience. In general, this technique allows to activate/deactivate neurons with the radiation of certain wavelengths on the cells that have ion channels sensitive to light, at the same time that can be used with fluorescent proteins. This dissertation has two main objectives. Initially, we study the interaction of light radiation and mice brain tissue to be applied in optogenetic experiments. In this step, we model absorption and scattering effects using mice brain tissue characteristics and Kubelka-Munk theory, for specific wavelengths, as a function of light penetration depth (distance) within the tissue. Furthermore, we model temperature variations using the finite element method to solve Pennes’ bioheat equation, with the aid of COMSOL Multiphysics Modeling Software 4.4, where we simulate protocols of light stimulation tipically used in optogenetics. Subsequently, we develop some computational algorithms to reduce the exposure of neuron cells to the light radiation necessary for the visualization of their emitted fluorescence. At this stage, we describe the image processing techniques developed to be used in fluorescence microscopy to reduce the exposure of the brain samples to continuous light, which is responsible for fluorochrome excitation. The developed techniques are able to track, in real time, a region of interest (ROI) and replace the fluorescence emitted by the cells by a virtual mask, as a result of the overlay of the tracked ROI and the fluorescence information previously stored, preserving cell location, independently of the time exposure to fluorescent light. In summary, this dissertation intends to investigate and describe the effects of light radiation in brain tissue, within the context of Optogenetics, in addition to providing a computational tool to be used in fluorescence microscopy experiments to reduce image bleaching and photodamage due to the intense exposure of fluorescent cells to light radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-intensity interval exercise has been described as an option for increasing physical activity and its use also being suggested in the therapeutic management of many conditions such as diabetes mellitus and heart failure. However, the knowledge of its physiological effects and parameters that can assure greater safety for interval exercise prescription; especially its effect on short- and medium-term (24 hours after exercise) exercise recovery, need to be clarified. This study objective was to evaluate the effect of continuous and interval aerobic exercise on the cardiac autonomic control immediate and medium term (24 hours), by assessing heart rate variability (HRV). The present study is a randomized crossover clinical trial in which healthy young individuals with low level of physical activity had the VFC 24 hours measured by a heart rate sensor and portable accelerometer (3D eMotion HRV, Kuopio, Finland) before and after continuous aerobic exercise (60-70% HR max, 21 min.) and interval exercise (cycle 1 min. 80-90% HR max, 2 min. at 50-60% HR max, duration 21 min.). HRV was measured in the time and frequency domain and the sympathovagal balance determined by the ratio LF / HF. Nonlinear evaluation was calculated by Shannon entropy. The data demonstrated delayed heart rate recovery immediate after exercise and lower HR after 24 hours compared to pre intervention values, especially in the interval exercise group. There was a tendency to higher predominance and representatives index values of sympathetic stimulation during the day in interval exercise group; however, without statistical significance. The study results help to clarify the effects of interval exercise on the 24 hours following interval exercise, setting parameters for prescription and for further evaluation of groups with metabolic and cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical and mineralogical analyses of manganese nodules from a large number of widely spaced localities in the Pacific and Indian Oceans have shown that their mineralogy and chemical composition varies both areally and with depth of formation. This is considered to result from a number of factors, important among which are: (a) their proximity to continental or volcanic sources of elements; (b) the chemical environment of deposition, including the degree of oxygenation; and (c) local factors such as the upward migration of reduced manganese in sediments from certain areas. Sub-surface nodules appear to share the chemical characteristics of their surface counterparts, especially those from volcanic areas where sub-surface sources of elements are probably important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.

In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.

The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.

This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.

The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.

The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.

EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.

Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.

The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.

This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.

The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an investigation on the development of a numerical assessment method for the hydrodynamic performance of an oscillating water column (OWC) wave energy converter. In the research work, a systematic study has been carried out on how the hydrodynamic problem can be solved and represented reliably, focusing on the phenomena of the interactions of the wave-structure and the wave-internal water surface. These phenomena are extensively examined numerically to show how the hydrodynamic parameters can be reliably obtained and used for the OWC performance assessment. In studying the dynamic system, a two-body system is used for the OWC wave energy converter. The first body is the device itself, and the second body is an imaginary “piston,” which replaces part of the water at the internal water surface in the water column. One advantage of the two-body system for an OWC wave energy converter is its physical representations, and therefore, the relevant mathematical expressions and the numerical simulation can be straightforward. That is, the main hydrodynamic parameters can be assessed using the boundary element method of the potential flow in frequency domain, and the relevant parameters are transformed directly from frequency domain to time domain for the two-body system. However, as it is shown in the research, an appropriate representation of the “imaginary” piston is very important, especially when the relevant parameters have to be transformed from frequency-domain to time domain for a further analysis. The examples given in the research have shown that the correct parameters transformed from frequency domain to time domain can be a vital factor for a successful numerical simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation on air compressibility in the air chamber and its effects on the power conversion of oscillating water column (OWC) devices. As it is well known that for practical OWC plants, their air chambers may be large enough for accommodating significant air compressibility, the “spring effect,” an effect that is frequently and simply regarded to store and release energy during the reciprocating process of a wave cycle. Its insight effects on the device’s performance and power conversion, however, have not been studied in detail. This research will investigate the phenomena with a special focus on the effects of air compressibility on wave energy conversion. Air compressibility itself is a complicated nonlinear process in nature, but it can be linearised for numerical simulations under certain assumptions for frequency domain analysis. In this research work, air compressibility in the OWC devices is first linearised and further coupled with the hydrodynamics of the OWC. It is able to show mathematically that in frequency-domain, air compressibility can increase the spring coefficients of both the water body motion and the device motion (if it is a floating device), and enhance the coupling effects between the water body and the structure. Corresponding to these changes, the OWC performance, the capture power, and the optimised Power Take-off (PTO) damping coefficient in the wave energy conversion can be all modified due to air compressibility. To validate the frequency-domain results and understand the problems better, the more accurate time-domain simulations with fewer assumptions have been used for comparison. It is shown that air compressibility may significantly change the dynamic responses and the capacity of converting wave energy of the OWC devices if the air chamber is very large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton cell size is important to biogeochemical and food web processes. The goal of this study is to estimate phytoplankton cell size distribution from satellite imagery of spectral remote sensing reflectance (Rrs(lambda)). Previous studies have indicated phytoplankton size classes have distinctive absorption spectra despite the physiological and taxonomic variability within an assemblage. For this study, the chlorophyll specific absorption spectra for phytoplankton size class extremes, pico- and microphytoplankton, are weighted by the percent microplankton (Sfm) and are the basis of phytoplankton size retrieval from SeaWiFS imagery. Satellite retrievals of Sfm are done through implementation of a forward optical model look-up table (LUT) that incorporates the range of absorption and scattering variability due to phytoplankton size, chlorophyll concentration ([Chl]) and dissolved and detrital matter (acdm(443)) in the global ocean from which Rrs(lambda) is calculated by the radiative transfer software, Hydrolight. The Hydrolight modeled Rrs(lambda) options for a given combination of [Chl] and acdm(443) within the LUT vary only due to Sfm. For a given pixel, the LUT search space was limited by satellite imagery of [Chl] and acdm(443). Within the narrowed search space, SeaWiFS Rrs(lambda) was matched with the closest LUT Rrs(lambda) option and the associated Sfm was assigned. Thresholds at which changes in Rrs(lambda) due to Sfm could be discerned were established in terms of [Chl] and acdm(443). In situ high-precision liquid chromatography-derived estimates of cell size are used in conjunction with matched daily satellite estimates of Sfm for validation and agree well. A single month is displayed as an example of the Sfm retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil temperature (in °C) was determined using a frequency domain sensor probe (WET-2 Sensor, Delta-T Devices, Cambridge, United Kingdom) on 1st August 2013. The device was inserted from the top 6 cm deep (length of the prongs) into the soil. The average of three measurements on the same day was calculated. All data where measured in the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.