982 resultados para drug combination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water is an integral part of DNA, and the conserved water molecules at the binding sites can modulate drug binding to DNA or protein. We report here that anthracycline antitumor antibiotics, adriamycin (AM) and daunomycin (DM), binding to DNA is accompanied by different hydration changes, with AM binding resulting in the uptake of about twice as many water molecules as DM. These results indicate that water is playing an important role in drug binding to DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of multiwalled carbon nanotubes (MWCNTs) and Ni2O3 on the flame retardancy of linear low density polyethylene (LLDPE) have been studied. A combination of MWCNTs and Ni2O3 showed a synergistic effect in improving the flame retardancy of LLDPE compared with LLDPE composites containing MWCNTs or Ni2O3 alone. As a result, the peak value of heat release rate measured by cone calorimeter was obviously decreased in the LLDPE/MWCNTs/Ni2O3 Composites. According to the results from rheological tests, carbonization experiments, and structural characterization of residual char, the improved flame retardancy was partially attributed to the formation of a networklike structure due to the good dispersion of MWCNTs in LLDPE matrix, and partially to the carbonization of degradation products of LLDPE catalyzed by Ni catalyst originated from Ni2O3, More importantly, both viscoelastic characteristics and catalytic carbonization behavior of LLDPE/MWCNTs/Ni2O3 composites acted in concert to result in a synergistic effect in improving the flame retardancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by H-1 NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 +/- 11 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel microstructured and pH sensitive poly(acryliac acid-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) (P(AA-co-HEMA)/PVA) interpenetrating network (IPN) hydrogel films were prepared by radical precipitation copolymerization and sequential IPN technology. The first P(AA-co-HEMA) network was synthesized in the present of IPN aqueous solution by radical initiating, then followed by condensation reaction (Glutaraldehyde as crosslinking agent) within the resultant latex, it formed multiple IPN microstructured hydrogel film. The film samples were characterized by IR, SEM and DSC. Swelling and deswelling behaviors and mechanical property showed the novel multiple IPN nanostuctured film had rapid response and good mechanical property. The IPN films were studied as controlled drug delivery material in different pH buffer solution using cationic compound, crystal violet as a model drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.