991 resultados para disease exacerbation
Resumo:
info:eu-repo/semantics/published
Resumo:
SCOPUS: ar.j
Resumo:
SCOPUS: cp.j
Resumo:
To evaluate the immunogenicity and safety of a 23-valent pneumococcal vaccine in human immunodeficiency virus (HIV)-seropositive patients, 80 men and 18 women received 1 dose of the vaccine (Pneumo 23; Pasteur Mérieux MSD, Brussels). The total IgG antibody response against all 23 Streptococcus pneumoniae capsular antigens was measured. Antibody levels were expressed in arbitrary units per microliter, referring to a standard curve. Geometric mean titers of the total IgG capsular antibodies on the day of vaccination and 30-45 days later were compared. The ratios of titers after and before vaccination in patients with > 500, 200-500, and < 200 CD4 lymphocytes/microL were 10, 10, and 12.6, respectively. Nonresponse (ratio < 4) occurred in 17% of patients and was unrelated to CD4 cell count. The vaccine was well tolerated; no serious side effects occurred. In 83% of the patients with HIV infection, the total antipneumococcal IgG level was higher after vaccination.
Resumo:
Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened airway hyperresponsiveness and pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63(+) endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.
Resumo:
B-lymphocytes have traditionally been thought to contribute to immunity and autoimmune disease through terminal differentiation into plasma cells that secrete antibody. However, studies in mice and recent clinical studies have demonstrated that genetically altered B-cell function and B-cell-targeted therapies can significantly affect autoimmune diseases that were predominantly thought to be T-cell-mediated. B-cell depletion in mouse models of disease has also led to the identification of alternative B-cell effector functions that regulate normal immune responses and autoimmune disease. This review highlights multiple B-cell effector mechanisms, including the promotion of cellular immunity, the negative regulation of immune responses, and the production of pathogenic antibodies.
Resumo:
The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.
Resumo:
Neurodegenerative diseases like Alzheimer's and Parkinson's disease are associated with elevated levels of iron, copper, and zinc and consequentially high levels of oxidative stress. Given the multifactorial nature of these diseases, it is becoming evident that the next generation of therapies must have multiple functions to combat multiple mechanisms of disease progression. Metal-chelating agents provide one such function as an intervention for ameliorating metal-associated damage in degenerative diseases. Targeting chelators to adjust localized metal imbalances in the brain, however, presents significant challenges. In this perspective, we focus on some noteworthy advances in the area of multifunctional metal chelators as potential therapeutic agents for neurodegenerative diseases. In addition to metal chelating ability, these agents also contain features designed to improve their uptake across the blood-brain barrier, increase their selectivity for metals in damage-prone environments, increase antioxidant capabilities, lower Abeta peptide aggregation, or inhibit disease-associated enzymes such as monoamine oxidase and acetylcholinesterase.
Resumo:
Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. These guidelines for its management have been built on the previous Infectious Diseases Society of America guidelines from 2000 and include new sections. There is a discussion of the management of cryptococcal meningoencephalitis in 3 risk groups: (1) human immunodeficiency virus (HIV)-infected individuals, (2) organ transplant recipients, and (3) non-HIV-infected and nontransplant hosts. There are specific recommendations for other unique risk populations, such as children, pregnant women, persons in resource-limited environments, and those with Cryptococcus gattii infection. Recommendations for management also include other sites of infection, including strategies for pulmonary cryptococcosis. Emphasis has been placed on potential complications in management of cryptococcal infection, including increased intracranial pressure, immune reconstitution inflammatory syndrome (IRIS), drug resistance, and cryptococcomas. Three key management principles have been articulated: (1) induction therapy for meningoencephalitis using fungicidal regimens, such as a polyene and flucytosine, followed by suppressive regimens using fluconazole; (2) importance of early recognition and treatment of increased intracranial pressure and/or IRIS; and (3) the use of lipid formulations of amphotericin B regimens in patients with renal impairment. Cryptococcosis remains a challenging management issue, with little new drug development or recent definitive studies. However, if the diagnosis is made early, if clinicians adhere to the basic principles of these guidelines, and if the underlying disease is controlled, then cryptococcosis can be managed successfully in the vast majority of patients.
Resumo:
In April 2008, the Infectious Diseases Society of America (IDSA) entered into an agreement with Connecticut Attorney General Richard Blumenthal to voluntarily undertake a special review of its 2006 Lyme disease guidelines. This agreement ended the Attorney General's investigation into the process by which the guidelines were developed. The IDSA agreed to convene an independent panel to conduct a one-time review of the guidelines. The Review Panel members, vetted by an ombudsman for potential conflicts of interest, reviewed the entirety of the 2006 guidelines, with particular attention to the recommendations devoted to post-Lyme disease syndromes. After multiple meetings, a public hearing, and extensive review of research and other information, the Review Panel concluded that the recommendations contained in the 2006 guidelines were medically and scientifically justified on the basis of all of the available evidence and that no changes to the guidelines were necessary.
Resumo:
BACKGROUND: Cryptococcosis occurring ≤30 days after transplantation is an unusual event, and its characteristics are not known. METHODS: Patients included 175 solid-organ transplant (SOT) recipients with cryptococcosis in a multicenter cohort. Very early-onset and late-onset cryptococcosis were defined as disease occurring ≤30 days or >30 days after transplantation, respectively. RESULTS: Very early-onset disease developed in 9 (5%) of the 175 patients at a mean of 5.7 days after transplantation. Overall, 55.6% (5 of 9) of the patients with very early-onset disease versus 25.9% (43 of 166) of the patients with late-onset disease were liver transplant recipients (P = .05). Very early cases were more likely to present with disease at unusual locations, including transplanted allograft and surgical fossa/site infections (55.6% vs 7.2%; P < .001). Two very early cases with onset on day 1 after transplantation (in a liver transplant recipient with Cryptococcus isolated from the lung and a heart transplant recipient with fungemia) likely were the result of undetected pretransplant disease. An additional 5 cases involving the allograft or surgical sites were likely the result of donor‐acquired infection. CONCLUSIONS: A subset of SOT recipients with cryptococcosis present very early after transplantation with disease that appears to occur preferentially in liver transplant recipients and involves unusual sites, such as the transplanted organ or the surgical site. These patients may have unrecognized pretransplant or donor-derived cryptococcosis.
Resumo:
Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose fitness costs of variable severity and may, in some cases, cause substantial mortality in their host populations. One example of the latter, the emergence of avian malaria in the endemic avifauna of Hawaii, has become a model for understanding the consequences of human-mediated disease introduction. The drastic declines of native Hawaiian birds due to avian malaria provided the impetus for examining more closely several aspects of host-parasite interactions in this system. Host-specificity is an important character determining the extent to which a parasite may emerge. Traditional parasite classification, however, has used host information as a character in taxonomical identification, potentially obscuring the true host range of many parasites. To improve upon previous methods, I first developed molecular tools to identify parasites infecting a particular host. I then used these molecular techniques to characterize host-specificity of parasites in the genera Plasmodium and Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity and are therefore most likely to emerge in new hosts in the future. Subsequently, I characterized the global distribution of the single lineage of P. relictum that has emerged in Hawaii. I demonstrate that this parasite has a broad host distribution worldwide, that it is likely of Old World origin and that it has been introduced to numerous islands around the world, where it may have been overlooked as a cause of decline in native birds. I also demonstrate that morphological classification of P. relictum does not capture differences among groups of parasites that appear to be reproductively isolated based on molecular evidence. Finally, I examined whether reduced immunological capacity, which has been proposed to explain the susceptibility of Hawaiian endemics, is a general feature of an "island syndrome" in isolated avifauna of the remote Pacific. I show that, over multiple time scales, changes in immune response are not uniform and that observed changes probably reflect differences in genetic diversity, parasite exposure and life history that are unique to each species.
Resumo:
Field and laboratory studies were conducted from 1998 - 2005 to examine the relationship between nutritional status and mycobacteriosis in Chesapeake Bay striped bass (Morone saxatilis). A review of DNA from archived tissue blocks indicated that the disease has been present since at least 1984. Field surveys and feeding trials were conducted from 1998-1999 to determine the nutritional condition of striped bass and the association with disease state. Proximate composition revealed elevated moisture (~ 80%) and low storage lipids (< 0.5% ww), characteristic of a poorly nourished population. These findings were not consistent with data collected in 1990-1991, or with experimentally fed fish. Mycobacteriosis explained little of the variance in chemical composition (p > 0.2); however elevated moisture and low lipid concentration were associated with fish with ulcerative lesions (p < 0.05). This suggests that age 3 and 4 striped bass were in poor nutritional health in 1998-1999, which may be independent from the disease process. Challenge studies were performed to address the hypothesis that disease progression and severity may be altered by nutritional status of the host. Intraperitoneal inoculation of 104 CFU M. marinum resulted in high mortality, elevated bacterial density, and poor granuloma formation in low ration (0.15% bw/d) groups while adequately fed fish (1% bw/d) followed a normal course of granulomatous inflammation with low mortality to a steady, equilibrium state. Further, we demonstrated that an active inflammatory state could be reactivated in fish through reductions in total diet. The energetic demand of mycobacteriosis, was insignificant in comparison to sham inoculated controls in adequately fed fish (p > 0.05). Declines in total body energy were only apparent during active, inflammatory stages of disease. Overall, these findings suggest that: 1) mycobacteriosis is not a new disease of Chesapeake Bay striped bass, 2) the disease has little energetic demand in the normal, chronic progression, and 3) poor nutritional health can greatly enhance the progression and severity, and reactivation of disease. The implications of this research are that management strategies focused on enhancing the nutritional state of striped bass could potentially alter the disease dynamics in Chesapeake Bay.
Resumo:
Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.
Resumo:
Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.