963 resultados para count data models
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.
Resumo:
Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
BACKGROUND: Legionella species cause severe forms of pneumonia with high mortality and complication rates. Accurate clinical predictors to assess the likelihood of Legionella community-acquired pneumonia (CAP) in patients presenting to the emergency department are lacking. METHODS: We retrospectively compared clinical and laboratory data of 82 consecutive patients with Legionella CAP with 368 consecutive patients with non-Legionella CAP included in two studies at the same institution. RESULTS: In multivariate logistic regression analysis we identified six parameters, namely high body temperature (OR 1.67, p < 0.0001), absence of sputum production (OR 3.67, p < 0.0001), low serum sodium concentrations (OR 0.89, p = 0.011), high levels of lactate dehydrogenase (OR 1.003, p = 0.007) and C-reactive protein (OR 1.006, p < 0.0001) and low platelet counts (OR 0.991, p < 0.0001), as independent predictors of Legionella CAP. Using optimal cut off values of these six parameters, we calculated a diagnostic score for Legionella CAP. The median score was significantly higher in Legionella CAP as compared to patients without Legionella (4 (IQR 3-4) vs 2 (IQR 1-2), p < 0.0001) with a respective odds ratio of 3.34 (95%CI 2.57-4.33, p < 0.0001). Receiver operating characteristics showed a high diagnostic accuracy of this diagnostic score (AUC 0.86 (95%CI 0.81-0.90), which was better as compared to each parameter alone. Of the 191 patients (42%) with a score of 0 or 1 point, only 3% had Legionella pneumonia. Conversely, of the 73 patients (16%) with > or =4 points, 66% of patients had Legionella CAP. CONCLUSION: Six clinical and laboratory parameters embedded in a simple diagnostic score accurately identified patients with Legionella CAP. If validated in future studies, this score might aid in the management of suspected Legionella CAP.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.
Resumo:
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Resumo:
The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m3) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000¿1:25 000). "Solà d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.
Resumo:
Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular or extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally structured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed for a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of methods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and discuss implications for the design of future tests and simple neurons models
Resumo:
PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.
Resumo:
BACKGROUND: It is well established that high adherence to HIV-infected patients on highly active antiretroviral treatment (HAART) is a major determinant of virological and immunologic success. Furthermore, psychosocial research has identified a wide range of adherence factors including patients' subjective beliefs about the effectiveness of HAART. Current statistical approaches, mainly based on the separate identification either of factors associated with treatment effectiveness or of those associated with adherence, fail to properly explore the true relationship between adherence and treatment effectiveness. Adherence behavior may be influenced not only by perceived benefits-which are usually the focus of related studies-but also by objective treatment benefits reflected in biological outcomes. METHODS: Our objective was to assess the bidirectional relationship between adherence and response to treatment among patients enrolled in the ANRS CO8 APROCO-COPILOTE study. We compared a conventional statistical approach based on the separate estimations of an adherence and an effectiveness equation to an econometric approach using a 2-equation simultaneous system based on the same 2 equations. RESULTS: Our results highlight a reciprocal relationship between adherence and treatment effectiveness. After controlling for endogeneity, adherence was positively associated with treatment effectiveness. Furthermore, CD4 count gain after baseline was found to have a positive significant effect on adherence at each observation period. This immunologic parameter was not significant when the adherence equation was estimated separately. In the 2-equation model, the covariances between disturbances of both equations were found to be significant, thus confirming the statistical appropriacy of studying adherence and treatment effectiveness jointly. CONCLUSIONS: Our results, which suggest that positive biological results arising as a result of high adherence levels, in turn reinforce continued adherence and strengthen the argument that patients who do not experience rapid improvement in their immunologic and clinical statuses after HAART initiation should be prioritized when developing adherence support interventions. Furthermore, they invalidate the hypothesis that HAART leads to "false reassurance" among HIV-infected patients.
Resumo:
Background and Purpose-The safety and efficacy of thrombolysis in cervical artery dissection (CAD) are controversial. The aim of this meta-analysis was to pool all individual patient data and provide a valid estimate of safety and outcome of thrombolysis in CAD.Methods-We performed a systematic literature search on intravenous and intra-arterial thrombolysis in CAD. We calculated the rates of pooled symptomatic intracranial hemorrhage and mortality and indirectly compared them with matched controls from the Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register. We applied multivariate regression models to identify predictors of excellent (modified Rankin Scale=0 to 1) and favorable (modified Rankin Scale=0 to 2) outcome.Results-We obtained individual patient data of 180 patients from 14 retrospective series and 22 case reports. Patients were predominantly female (68%), with a mean +/- SD age of 46 +/- 11 years. Most patients presented with severe stroke (median National Institutes of Health Stroke Scale score=16). Treatment was intravenous thrombolysis in 67% and intra-arterial thrombolysis in 33%. Median follow-up was 3 months. The pooled symptomatic intracranial hemorrhage rate was 3.1% (95% CI, 1.3 to 7.2). Overall mortality was 8.1% (95% CI, 4.9 to 13.2), and 41.0% (95% CI, 31.4 to 51.4) had an excellent outcome. Stroke severity was a strong predictor of outcome. Overlapping confidence intervals of end points indicated no relevant differences with matched controls from the Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register.Conclusions-Safety and outcome of thrombolysis in patients with CAD-related stroke appear similar to those for stroke from all causes. Based on our findings, thrombolysis should not be withheld in patients with CAD. (Stroke. 2011;42:2515-2520.)