896 resultados para cobalt iron PNP carbene hydrogenation
Resumo:
The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 x 105 cm(3) mol(-1) s(-1) at a concentration of 5.0 x 10(-5) mol L-1. When a Nafion (R) film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 x 10(-5) to 5.0 x 10(-4) mol L-1 with a slope of 23.5 mA mol(-1) L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 x 10(-6) mol L-1 and the relative standard deviation for five measurements of 2.5 x 10(-4) mol L-1 dopamine was 0.58%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.
Resumo:
The electrochemical oxidation of some p-substituted benzylic derivatives of Co(III) dimethylglyoximato and Co(III)bis(salicylaldehydc)o-phenylenediimine in dimethylformamide. 0.2 M in tetraethyammonium perchlorate, on a platinum electrode, at several temperatures, is described as an ECE type, the first electrochemical step being a quasi-reversible one-electron charge transfer at room temperature. At temperatures around -20°C, or lower, the influence of the irreversible chemical decomposition of the oxidized species, via a solvent or other nucleophilic-assisted reaction, is negligible. It is suggested that at low temperatures the oxidation to the formally CoIV-R species is followed by an isomerization reaction in which this complex is partially transformed in a CoIII-(R) species or a s π-complex which undergoes an electroreduction at less positive potentials than those corresponding to the reduction of the CoIV-R species. © 1982.
Resumo:
Mössbauer spectroscopy was used to investigate the early aging stage of iron(III) hydroxide sols prepared by oxidation of Fe(CO)5 in ethanolic solution, followed by vacuum drying at room temperature. One sample was composed of amorphous particles, while two other samples were partially crystallized, either as a result of solvent change or of spontaneous aging. The main results of Mössbauer measurements in the 80-320 K temperature range are: (a) partially crystallized particles exhibit a strong, S-shaped temperature dependence of the quadrupole splitting, in contrast to a weak and linear variation for amorphous particles; (b) the recoilless fraction temperature dependence is affected by vibration of the particles as a whole, with an effective force constant which is smaller for crystallized particles than for amorphous ones. Furthermore, the former exhibit anf-factor discontinuity near 0°C, which is attributed to melting of a surface layer built up during the crystallization process. © 1986.
Resumo:
In this study the levels of Cu, Fe, Pb and Zn, determined in hair of healthy children (25-85 months), living at Araraquara (São Paulo, Brasil) are reported. Analytical determinations were carried out by using atomic absorption spectrometry employing an air acetylene flame. The results obtained are discussed with regard to effect of sex and age, as well compared with others analogous studies.
Resumo:
In the Cuiabá region-State of Mato Grosso, Central Brazil-primary gold mineralization is hosted by two generations of quartz veins in Precambrian metamorphic terrains of the Cuiabá Group. Gold is mined from the veins and mainly from the eluvial horizons that cover the deeply altered basement. In the lodes gold occurs as small particles (less than 1 mm) associated with pyrite and contains up to 5% Ag. Larger particles and nuggets of almost pure gold are found in the iron duricrust which caps the upper levels of the weathering profile. It is difficult to determine the average grade of this kind of deposit but some prospects in the Cuiabá region produce up to 2 g gold per ton of ore. Lateritization is responsible for both the formation of the iron crust and the concentration of gold within the regolith. Under a tropical climate, the supergene alteration of phyllites of the Cuiabá Group has led to the formation of a weathering profile consisting typically of saprolite, mottled clay zone and duricrust, from bottom to top. The duricrust is directly derived form the in situ weathering of phyllites. Geochemical balance calculations indicate that in the transition from the saprolite to the duricrust lateritization has promoted a progressive loss of Si, Al and K, and more than 500% of absolute Fe enrichment. Gold underwent a supergene evolution related to the development of the weathering profile. In the saprolite and mottled clay zone, associated with quartz and oxidized sulfides, gold dissolves as demonstrated by corrosion features at the surface of the particles. The formation of secondary gold in the duricrust is indicated by the larger size of the nuggets, their higher fineness and the close relationship between gold and the neoformed iron oxy-hydroxides. © 1991.
Resumo:
Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.
Resumo:
Covalently attached benzimidazole molecules on silica gel surface, ≡SiL (where L = N-propyl-benzimidazole), adsorbs Co(ClO4)2 from non-aqueous solvent by forming a surface complex according to the reaction: m ≡SiL + Co(ClO4)2 → (≡SiL)mCo(ClO4)2. The equilibrium constant and the adsorption capacity, determined by applying the Langmuir equation were b = 3.0 × 103 L mol-1 and Ns= 0.098 × 10-3 mol g-1, respectively. The metal is bonded through the nitrogen atom and the perchlorate ion is not coordinated. The ESR study indicated that the complex has essentially an octahedral geometry with tetragonal distortion, with the electrons of the four nitrogen atoms interacting with the cobalt central metal ion in the equatorial plane. Only one complex species was detected on the surface.
Resumo:
A viability study of an electrolytic process for the transformation of organic matter and free sulphide contained in wastewater from a fowl slaughterhouse in order to minimise odours was carried out Cast iron and aluminium electrodes were tried at 7.09 mA/cm2, under strong agitation, at 297 K. Conductivity, pH, chemical oxygen demand (COD), amount of settleable solids, and sulphide content were monitored with electrolysis duration. The cast iron electrodes were found to be viable for the elimination of soluble sulphides in the wastewater, leading to the elimination of its strong odour after short times of electrolysis. A significant decrease in COD was also attained.
Resumo:
The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.