976 resultados para bradykinin-related peptides
Resumo:
Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).
Resumo:
The pseudoproline residue (Psi Pro, L-2,2-dimethyl-1,3-thiazolidine-4-carboxylic acid) has been introduced into heterochiral diproline segments that have been previously shown to facilitate the formation of beta-hairpins, containing central two and three residue turns. NMR studies of the octapeptide Boc-Leu-Phe-Val-(D)Pro-Psi Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Val-Val-(D)Pro-Psi Pro-Leu-Val-Val-OMe (2), and the nonapeptide sequence Boc-Leu-Phe-Val-(D)Pro-Psi Pro-(D)Ala-Leu-Phe-Val-OMe (3) established well-registered beta-hairpin structures in chloroform solution, with the almost exclusive population of the trans conformation for the peptide bond preceding the Psi Pro residue. The beta-hairpin conformation of 1 is confirmed by single crystal X-ray diffraction. Truncation of the strand length in Boc-Val-(D)Pro-Psi Pro-Leu-OMe (4) results in air increase in the population of the cis conformer, with a cis/trans ratio of 3.65. Replacement of Psi Pro in 4 by (L)Pro in 5, results in almost exclusive population of the trans form, resulting in an incipient beta-hairpin conformation, stabilized by two intramolecular hydrogen bonds. Further truncation of the sequence gives an appreciable rise in the population of cis conformers in the tripeptide piv-(D)Pro-Psi Pro-Leu-OMe (6). In the homochiral segment Piv-Pro Psi Pro-Leu-OMe (7) only the cis form is observed with the NMR evidence strongly supporting a type VIa beta-turn conformation, stabilized by a 4 -> 1 hydrogen bond between the Piv (CO) and Leu (3) NH groups. The crystal structure of the analog peptide 7a (Piv-Pro-Psi(H,CH3)Pro-Leu-NHMe) confirms the cis peptide bond geometry for the Pro-Psi(H,CH3)pro peptide bond, resulting in a type VIa beta-turn conformation.
Resumo:
Trimeric autotransporters are a family of secreted outer membrane proteins in Gram-negative bacteria. These obligate homotrimeric proteins share a conserved C-terminal region, termed the translocation unit. This domain consists of an integral membrane β-barrel anchor and associated α-helices which pass through the pore of the barrel. The α-helices link to the extracellular portion of the protein, the passenger domain. Autotransportation refers to the way in which the passenger domain is secreted into the extracellular space. It appears that the translocation unit mediates the transport of the passenger domain across the outer membrane, and no external factors, such as ATP, ion gradients nor other proteins, are required. The passenger domain of autotransporters contains the specific activities of each protein. These are usually related to virulence. In trimeric autotransporters, the main function of the proteins is to act as adhesins. One such protein is the Yersinia adhesin YadA, found in enteropathogenic species of Yersinia. The main activity of YadA from Y. enterocolitica is to bind collagen, and it also mediates adhesion to other molecules of the extracellular matrix. In addition, YadA is involved in serum resistance, phagocytosis resistance, binding to epithelial cells and autoagglutination. YadA is an essential virulence factor of Y. enterocolitica, and removal of this protein from the bacteria leads to avirulence. In this study, I investigated the YadA-collagen interaction by studying the binding of YadA to collagen-mimicking peptides by several biochemical and biophysical methods. YadA bound as tightly to the triple-helical model peptide (Pro-Hyp-Gly)10 as to native collagen type I. However, YadA failed to bind a similar peptide that does not form a collagenous triple helix. As (Pro-Hyp-Gly)10 does not contain a specific sequence, we concluded that a triple-helical conformation is necessary for YadA binding, but no specific sequence is required. To further investigate binding determinants for YadA in collagens, I examined the binding of YadA to a library of collagen-mimicking peptides that span the entire triple-helical sequences of human collagens type II and type III. YadA bound promiscuously to many but not all peptides, indicating that a triple-helical conformation alone is not sufficient for binding. The high-binding peptides did not share a clear binding motif, but these peptides were rich in hydroxyproline residues and contained a low number of charged residues. YadA thus binds collagens without sequence specificity. This strategy of promiscuous binding may be advantageous for pathogenic bacteria. The Eib proteins from Escherichia coli are immunoglobulin (Ig)-binding homologues of YadA. I showed conclusively that recombinant EibA, EibC, EibD and EibF bind to IgG Fc. I crystallised a fragment of the passenger domain of EibD, which binds IgA in addition to IgG. The structure has a YadA-like head domain and an extended coiled-coil stalk. The top half of the coiled-coil is right-handed with hendecad periodicity, whereas the lower half is a canonical left-handed coiled-coil. At the transition from right- to left-handedness, a small β-sheet protrudes from each monomer. I was able to map the binding regions for IgG and IgA using truncations and site-directed mutagenesis to the coiled-coil stalk and identified residues critical for Ig binding.
Effect of the method of preparation and pretreatment on the texture of alumina and related catalysts
Resumo:
The effect of the method of preparation and pretreatment on catalyst texture was investigated in the case of alumina, silica-alumina, 10 × molecular sieve and thoria catalysts. All the catalysts were characterised with respect to their specific surface area, surface acidity, pore size distribution and pore volume. The above properties were found to reflect the textural changes that might have been undergone by the catalyst surface as a result of the method of preparation and pretreatment. The method of preparation was found to influence markedly the acidity of the surface and to a lesser extent the surface area and pore size distribution. Acid-treatment was found to increase selectively the acidity of the catalyst while heat-treatment was found to decrease proportionally the acidity as well as surface area of the catalyst.
Resumo:
Most studies of life history evolution are based on the assumption that species exist at equilibrium and spatially distinct separated populations. In reality, this is rarely the case, as populations are often spatially structured with ephemeral local populations. Therefore, the characteristics of metapopulations should be considered while studying factors affecting life history evolution. Theoretical studies have examined spatial processes shaping the evolution of life history traits to some extent, but there is little empirical data and evidence to investigate model predictions. In my thesis I have tried to bridge the gap between theoretical and empirical studies by using the well-known Glanville fritillary (Melitaea cinxia) metapopulation as a model system. The long-term persistence of classic metapopulations requires sufficient dispersal to establish new local populations to compensate for local extinctions. Previous studies on the Glanville fritillary have shown that females establishing new populations are not a random sample from the metapopulation, but they are in fact more dispersive than females in old populations. Many other life-history traits, such as body size, fecundity and lifespan, may be related to dispersal rate. Therefore, I examined a range of correlated traits for their evolutionary and ecological consequences. I was particularly interested in how the traits vary under natural environmental conditions, hence all studies were conducted in a large (32 x 26 m) outdoor population cage built upon a natural habitat patch. Individuals for the experiments were sampled from newly-established and old populations within a large metapopulation. Results show that females originating from newly-established populations had higher within-habitat patch mobility than females from old populations. I showed that dispersal rate is heritable and that flight activity is related to variation in a gene encoding the glycolytic enzyme phosphoglucose isomerase. Both among-individual and among-population variation in dispersal are correlated with the reproductive performance of females, though I found no evidence for a trade-off between dispersal and fecundity in terms of lifetime egg production or clutch size. Instead, the results suggest that highly dispersive females from newly-established populations have a shorter lifespan than females from old populations, and that dispersive females may pay a cost in terms of reduced lifetime reproductive success due to increased time spent outside habitat patches. In summary, the results of this thesis show that genotype-dependent dispersal rate correlates with other life history traits in the Glanville fritillary, and that the rapid turnover of local populations (extinctions and re-colonisations) is likely to be the mechanism that maintains phenotypic variation in many life history traits at the metapopulation level.
Resumo:
As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
One of the monoclonal antibodies raised against bovine beta-lactoglobulin reacted with human serum retinol binding protein. The finding that this monoclonal antibody also reacted with the serum retinol binding proteins isolated from other animals, suggested that this epitopic conformation is conserved among these proteins. Using ELISA and various synthetic peptides of defined sequence, we show in this paper that the epitope defined by this monoclonal antibody comprises of the highly conserved core sequence of DTDY present in beta-lactoglobulin and retinol binding proteins.
Resumo:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Resumo:
The c-Fos–c-Jun complex forms the activator protein 1 transcription factor, a therapeutic target in the treatment of cancer. Various synthetic peptides have been designed to try to selectively disrupt the interaction between c-Fos and c-Jun at its leucine zipper domain. To evaluate the binding affinity between these synthetic peptides and c-Fos, polarizable and nonpolarizable molecular dynamics (MD) simulations were conducted, and the resulting conformations were analyzed using the molecular mechanics generalized Born surface area (MM/GBSA) method to compute free energies of binding. In contrast to empirical and semiempirical approaches, the estimation of free energies of binding using a combination of MD simulations and the MM/GBSA approach takes into account dynamical properties such as conformational changes, as well as solvation effects and hydrophobic and hydrophilic interactions. The predicted binding affinities of the series of c-Jun-based peptides targeting the c-Fos peptide show good correlation with experimental melting temperatures. This provides the basis for the rational design of peptides based on internal, van der Waals, and electrostatic interactions.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
Crystalline complexes of succinic acid with DL- and L-lysine have been prepared and analysed by X-ray diffraction. DL-Lysine complex: C6HIsN202 + 1 2- 1 ~C4H404 .~C4H604, Mr -- 264"2, PI, a = 5"506 (4), =8.070(2), c=14.089(2) A,, a=92.02(1), /3= 100"69 (3), y = 95"85 (3) ~>, Z = 2, Dx = 1"44 g cm -3, R = 0.059 for 2546 observed reflections. Form I of the e-lysine complex: C6HIsN20-, ~ .C4H504, Mr = 264.2, P1, a = 5" 125 (2), b = 8"087 (1), c = 8"689 (1) A,, a = 112.06 (1), /3 = 99.08 (2), y = 93"77(2) °, Z--l, D,,,=1"34(3), Dx=l"34gcm 3 R = 0.033 for 1475 observed reflections. Form II of + I 2- the e-lysine complex: C6H15N202 .,iC4H404 .- 1 I ") 4C4H604.4(C4HsO4""H'"CaH404)" , Mr = 264"2, P1, a = 10.143 (4), b = 10.256 (2), c = 12"916 (3) A,, a = 105.00 (2),/3 = 99-09 (3), y = 92"78 (3)::, Z = 4, Dm= 1"37(4), D,.= 1.38gcm 3, R=0.067 for 2809 observed reflections. The succinic acid molecules in the structures exhibit a variety of ionization states. Two of the lysine conformations found in the complexes have been observed for the first time in crystals containing lysine. Form II of the L-lysine complex is highly pseudosymmetric. In all the complexes, unlike molecules aggregate into separate alternating layers. The basic element of aggregation in the lysine layer in the complexes is an S2-type head-to-tail sequence. This element combines in different ways in the three structures. The basic element of aggre gation in the succinic acid layer in the complexes is a hydrogen-bonded ribbon. The ribbons are interconnected indirectly through amino groups in the lysine layer.
Resumo:
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.
Resumo:
Conformational studies have been carried out on hydrogenbonded all-trans cyclic pentapeptide backbone. Application of a combination of grid search and energy minimization on this system has resulted in obtaining 23 minimum energy conformations, which are characterized by unique patterns of hydrogen bonding comprising of β- and γ-turns. A study of the minimum energy conformationsvis-a-vis non-planar deviation of the peptide units reveals that non-planarity is an inherent feature in many cases. A study on conformational clustering of minimum energy conformations shows that the minimum energy conformations fall into 6 distinct conformational families. Preliminary comparison with available X-ray structures of cyclic pentapeptide indicates that only some of the minimum energy conformations have formed crystal structures. The set of minimum energy conformations worked out in the present study can form a consolidated database of prototypes for hydrogen bonded backbone and be useful for modelling cyclic pentapeptides both synthetic and bioactive in nature.