937 resultados para ammonia in air
Resumo:
A new type of solid-state galvanic cell for detecting a small amount of hydrogen in air at room temperature is proposed. The sensor cell is a potentiometric cell using Ce0.95Ca0.05F2.95 as solid-state electrolyte. The cell exhibits good sensing properties to hydrogen in air at room temperature.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
The reaction rates of MTPP with oxygen in air are Inas than that with pure oxygen, the ratio is roughly the same as to the partial presence of imygen in air, The influences of S-ligand etbanethiol and O- litand Vc on the above Systems have also been investigated, the former makes the MP hands having more changes and the reaction rate constants becoming greater, the latter has less influence.
CHARACTERIZATION OF GAMMA-RADIATION CROSS-LINKED CRYSTALLINE POLYMERS BY CRYSTALLIZATION TEMPERATURE
Resumo:
The effect of gamma-radlatlon on plain crystalline polymers and crystalline polymers containing different amounts of difunctional monomer both in vacuum and in air at room temperature has been investigated with DSC. It was found that the crystallization temperature T_c of crosslinked sample measured on DSC at a constant cooling rate decreases with increasing radiation dose. The difference between T_c before and after crosslinking (T_(c_0)-T_(c_R)) is linearly related to the radiation dose for plain polymer....
Resumo:
Experiments on the corrosion fatigue behaviour of welded joints of the steel for marine platform in air and seawater, and of the joints in seawater with cathodic protection, yielded data for linear regression to obtain fatigue life curves (Delta S-N-f). The laws of corrosion fatigue in welded joints of test steel are discussed with reference to those of A(587) and A(131) steel. In these experiments, the fatigue damage occurring at all welded joints around the weld interface resulted in the cracks and fractures. The fatigue life of the specimens in seawater with cathodic protection is longer than that in seawater Without protection.
Resumo:
Pyrite is the most stable iron-sulfide in reduced environment, and plays an important role in geochemical iron-sulfur cycling of sediments. Thus, the presence of pyrite in sediments and rocks is an important indicator of sedimentary environments. Previous studies on the thermal products of pyrite showed that all of the products (e.g., pyrrhotite, magnetite, hematite) have strong capability of carrying remanence. To deepen our understanding of the environmental and paleomagnetic significances of pyrite, the mineral transformation processes of pyrite upon heating were systematically investigated in this study using intergrated rock magnetic experiments (in both argon and air atmospheres) and X-ray diffraction analysis. The room temperature susceptibility of the paramagnetic pyrite is about 2.68×10-5 SI. In argon atmosphere (reducing environment), pyrite was transformed into monoclinic stable single domain (SD) pyrrhotite above 440 C. The corresponding coercive force and remanence coercivity are about 20 mT and 30 mT, respectively. In contrast, in air atmosphere (oxidation environment), the intermediate thermal products of pyrite are magnetite and pyrrhotite, which were quickly further oxidated to SD hematite, which has coercivity of about 1400 mT. In addition, the hematite particles gradually grow from SD to PSD grain size region by multiple heating runs. The transformation processes of pyrite in oxidation atomosphere can be interpreted by three possible pathways: (1) pyrite→magnetite→hematite; (2) pyrite→pyrrhotite→magnetite→hematite; and (3) pyrite→pyrrhotite→hematite. Low-temperature magnetic experiments show no transitions for pyrite. Despite that low-temperature magnetic method is not suitable for identification of pyrite, it is clear in this study that the high-temperature thermomagnetic measurements (e.g., -T and J-T curves) are very sensitive to the presence of pyrite in sediments and rocks. Nevertheless, for the thermal treatment products, low-temperature magnetic measurements showed the 34 K transition of pyrrhotite and the 250 K Morine transition of hematite. Iron-sulfide has also been found on Martian meteorolites by other workers. Therefore, systematic study of rock magnetism of pyrite (and other iron-sulfides) and their products will have great significances for both paleomagnetism and planetary magnetism.
Resumo:
The coda of seismic waves consists of that part of the signal after the directly arrivials. In a finite medium, or in one that is strongly heterogeneous, the coda is dominated by waves which have repeatedly sampled the medium. Small changes in a medium which may have no detectable influence on the first arrivals are amplified by this repeated sampling and may thus be detectable in the coda. Because of this, coda wave is widely used in detecting micro variations in medium。 In this paper, we give a general view of the theory and application of coda wave, especially coda wave interferometry. We focus on discussing the application of coda wave interferometry on data source of active situ experiment。 First, we apply coda wave interferometry in a short time period situ experiment which last for three days. We also apply the method of coda wave interferometry in a situ experiment which last for one month. Daily circle variations of seismic velocity around the experiment site were obtained, and we also observed that the velocity variations in the experiment site have a significant correlation with the environment factors, including air temperature, barometric pressure, solid earth tide and the level of rainfall. We find that the velocity variation during this period is up to 10-3. The relationship between velocity variation and changes in air temperature, barometric pressure and solid earth tide was analyzed with least square linear fitting .The velocity has no dependence on the air temperature. But velocity has a change of 10-6--10-7 when the barometer or earth tide change per Pa. Generally, we conclude the work and results of previous researchers, and we also display our works and results. We hopes to contribute to the future research of coda wave interferometry.
Resumo:
Polypyromellitimide molding powder has been prepared. In the 78-370 K range, the dependence of the specific heat capacity (c(p)) on the temperature (T) is given by the polynomial: c(p)=0.8163+0.4592X+0.02468X(2)+0.1192X(3)+0.05659X(4) (J K-1 g(-1)) where X=(T-225.5)/144.5. Thermal decomposition in air starts at 716 K, and is complete at 1034 K. The standard combustion enthalpy is Delta(c)H=-26.442 kJ g(-1). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Herein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rather than continuous nanowires. The gas nanosensors could sense H(2)S in air at room temperature with a 3 ppb limit of detection. The sensors were reversible, and increasing the bias voltage reduced the sensor recovery time, probably by local Joule heating. The sensing mechanism is believed to be based on the modulation of the conduction path across the nanotubes emanating from the modulation of electron exchange between the gold and carbon nanotube defect sites when exposed to H(2)S.
Resumo:
Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.
Resumo:
In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate
Resumo:
Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.
Resumo:
Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.
Resumo:
The production rates of a range of low molecular weight halogenated organics have been determined in cultures of five temperate species of macroalgae collected from the north coast of Norfolk, England. Compounds studied included CH3Br, the chlorinated organics CH3Cl, CH2Cl2 and CHCl3, and the iodinated organics CH3I, C2H5I, and CH2ClI. Measurements of a wider range of halocarbon concentrations in an isolated rockpool and in air over the seaweed bed were also conducted to evaluate the local impact of the seaweeds on halocarbon concentrations in the natural environment. Estimates for the global emissions of some of the key halogenated compounds from macroalgae have been derived. In general macrophytes appear not to be globally significant producers of the particular halocarbons studied. In coastal regions, however, the impact on local atmospheric composition and chemistry could be greater.
Resumo:
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.