906 resultados para air permeability
Resumo:
The shrinking behavior, apparent densities and rehydration indexes of fresh and osmotically pre-treated pineapple slices during air-drying were obtained. The air drying velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature. Volumetric shrinkage of fresh samples was temperature independent for drying at high air velocities but, at lower velocities, increased with decreasing drying temperature. Osmotically pre-treating the material resulted in reduced shrinkage, as well as drying with product temperature controlled, due to lower drying times needed that led to shorter high temperature exposition. Moisture dependence of apparent density was highly non-linear and could be fitted by an empirical model. Fresh sample rehydration indexes were higher than osmosed ones and increased with increasing temperature, except for pre-treated samples dried at 70 degreesC, probably due to superficial sugar caramelization, which reduced surface water permeability.
Resumo:
An experimental investigation of air enrichment in a combustion chamber designed to incinerate aqueous residues is presented. Diesel fuel and liquefied petroleum gas (LPG) were used independently as fuels. An increase of 85% in the incineration capacity was obtained with nearly 50% O-2 in the oxidant gas, in comparison to incineration with air only. The incineration capacity continues increasing for enrichment levels above 50% O-2 , although at a lower pace. For complete oxy-flame combustion (100% O-2 ), the increase of the incineration capacity was about 110% relative to the starting conditions and about 13.5% relative to the condition with 50% O-2 . The CO concentration measured near the flame front decreases drastically with the increase of O-2 content in the oxidant gas. At the chamber exit, the CO concentration was always near zero, indicating that the chamber residence time was sufficient to complete fuel oxidation in any test setting. For diesel fuel, the NOx was entirely formed in the first region of the combustion chamber. For diesel fuel, there was some increase in the NOx concentration up to 35% of O-2 ; this increase became very sharp after that. From 60 ppm, at operation with air only, the NOx concentration raises to 200 ppm at 35% O-2 , and then to 2900 ppm at 74% O-2 . The latter corresponds to six times more NOx in terms of the ratio of mass of NO to mass of residue, compared to the situation of combustion with air only. For LPG, the NOx concentrations reached 4200 ppm at 80% O-2 , corresponding to nine times more, also in terms of the ratio of mass of NO to mass of residue, in comparison with combustion with air only. Results of different techniques used to control the NOx emission during air enrichment are discussed: (a) variation of the recirculated zone intensity, (b) increase of the spray Sauter mean diameter, (c) fuel staging, (d) oxidizer staging, and (e) ammonia injection. The present paper shows that NOx emission may be controlled without damage of the increase of incineration capacity by the enrichment and with low emission of partial oxidation pollutants such as CO.
Resumo:
Fourteen samples of particulate matter and semi-volatile organic compounds were collected during 6 months in the city of Campo Grande, South Mato Grosso State, Brazil. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on Fluoropore PTFE filters and gas-phase PAHs were collected into sorbent tubes with XAD-2 resin. Both types of samples were extracted with a dichloromethane/methanol mixture (4:1 v/v), then the extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis. PAHs, oxidized PAH (oxy-PAHs), phenols and methoxyphenols were identified by use of GC retention indices and MS files. The average value obtained for the sum of 15 PAHs was 21.05 ng m(-3) (range: 8.94-62.5 ng m(-3)). The presence of specific tracers and calculations of characteristic ratios (e.g. [Phe]/[Phe] + [Ant]) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Levoglucosan (the anhydride of beta-glucose), retene (1-methyl-7-isopropylphenanthrene) and methoxyphenols (derivatives of syringol and guaiacol) and tracers for wood burning were identified. This study demonstrates that biomass burning from the rural zone is the main source of PAHs and emissions of other substances in the investigated site of Campo Grande. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this article we investigate experimentally the potential of using pulsating flows for drying of food grains. A Rijke type oscillator with an electrical heater was used to dry batches of soybean grains. Drying temperatures were 60 degreesC. We observed a decrease on the drying time for pulsating flows when compared with the conventional non-pulsating regime. This decrease depended on sample initial moisture content and weight, and on final sample moisture content. (C) 2004 Elsevier B.V. Ltd.
Resumo:
The presence of an accessory air breathing mechanism as verified by several authors, is widespread among Loricariidae, where modified parts of the digestive tract act primarily as oxygen-exchange organs. An anatomical and histological analysis was carried out on the stomach and intestine of the armoured catfish Liposarcus anisitsi. The data support the assumption that the modified stomach is responsible for holding air and allows blood oxygenation under hypoxia. Experiments demonstrating survival of air breathing Liposarcus in severely hypoxic water support the hypothesis and are discussed.
Resumo:
Glass transition temperatures of freeze-dried tomato conditioned at various water activities at 25 C were determined by differential scanning calorimetry (DSC). Air-dried tomato with and without osmotic pre-treatment in sucrose/NaCl solutions was also analyzed. Thermograms corresponding to the low water activity domain (0.11 less than or equal to a(w) less than or equal to 0.75) revealed the existence of two glass transitions, which were attributed to separated phases formed by sugars and water and other natural macromolecules present in the vegetable. Both transitions were plasticized by water and experimental data could be well correlated by the Gordon-Taylor equation in the low-temperature domain, and by the Kwei model in the high-temperature domain. For higher water activities, the low-temperature glass transition curve exhibited a discontinuity, with suddenly increased glass transition temperatures approaching a constant value that corresponds to the T-g of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through the melting enthalpy dependence on the moisture content. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Purpose: To determine the influence of different dentin treatments on the microtensile bond strengths of adhesive resins to dentin. Methods: Fifteen human molars were ground to 600-grit to obtain flat root-dentin surfaces. Five different dentin treatments were evaluated: Group 1 - 10% phosphoric acid for 30 seconds; Group 2 - 37% phosphoric acid for 15 seconds; Group 3 - air-abrasion for 10 seconds followed by 10% phosphoric acid for 30 seconds; Group 4 - air-abasion for 10 seconds followed by 37% phosphoric acid for 15 seconds. The dental adhesive (OptiBond Solo Plus) was applied according to manufacturer's instructions and followed by composite (Z100) application to provide sufficient bulk for microtensile bond testing. All samples were placed in distilled water for 24 hours at 37degreesC, thermocycled for 500 cycles in distilled water at 10degreesC and 50degreesC, and serially sliced perpendicular to the adhesive surface and subjected to tensile forces (0.5 mm/minute). Additional samples were prepared for SEM to observe the adhesive interface. Results: Group 2 exhibited significantly (P< 0.05) lower bond strength values than all other treatments. The bond strengths of the different conditions were (in MPa): Group 1: 43.0 +/- 16.1; Group 2: 29.2 +/- 8.3; Group 3: 48.1 +/- 14.2; Group 4: 41.0 +/- 9.3. The dentin treated with phosphoric acid 37% for 15 seconds showed the lowest values of microtensile bond strength. The results obtained with Groups 1, 3 and 4 were statistically similar.
Resumo:
A simple and sensitive method for determining atmospheric ammonia (NH3), using a hanging drop, is described. A colorimetric sensor is composed of two optical fibers and the source of monochromatic light implemented was a red light emitting diode (LED) (635 nm). Preliminary experiments were carried out in order to optimize the geometry of the sensor. These tests showed that the best signal absorbance was obtained using a 22 muL deionized water drop for sampling the gas and as addition of 4 muL of each of the reactants to form the blue dye (indophenol). Some important analytical parameters were also studied, including sampling time and flow rate. The analytical curve was constructed with a concentration range of 3-20 ppbv of gaseous NH3 standard. The detection limit reached was of ca 0.5 ppbv. It was observed that formaldehyde and diethylamine did not interfere. However, studies showed that hydrogen sulfide caused a negative interference of 20%, when present in the atmosphere in a concentration equal to that of NE3. The method considered here was shown to be easy to apply, making it possible to make a determination every 17 min.