885 resultados para Visual robot control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis chronicles the design and implementation of a Internet/Intranet and database based application for the quality control of hurricane surface wind observations. A quality control session consists of selecting desired observation types to be viewed and determining a storm track based time window for viewing the data. All observations of the selected types are then plotted in a storm relative view for the chosen time window and geography is positioned for the storm-center time about which an objective analysis can be performed. Users then make decisions about data validity through visual nearest-neighbor comparison and inspection. The project employed an Object Oriented iterative development method from beginning to end and its implementation primarily features the Java programming language. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis chronicles the design and implementation of a Intemet/Intranet and database based application for the quality control of hurricane surface wind observations. A quality control session consists of selecting desired observation types to be viewed and determining a storm track based time window for viewing the data. All observations of the selected types are then plotted in a storm relative view for the chosen time window and geography is positioned for the storm-center time about which an objective analysis can be performed. Users then make decisions about data validity through visual nearestneighbor comparison and inspection. The project employed an Object Oriented iterative development method from beginning to end and its implementation primarily features the Java programming language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research is carried out from the viewpoint of primarily space applications where human lives may be in danger if they are to work under these conditions. This work proposes to develop a one-degree-of-freedom (1-DOF) force-reflecting manual controller (FRMC) prototype for teleoperation, and address the effects of time delays commonly found in space applications where the control is accomplished via the earth-based control stations. To test the FRMC, a mobile robot (PPRK) and a slider-bar were developed and integrated to the 1-DOF FRMC. The software developed in Visual Basic is able to telecontrol any platform that uses an SV203 controller through the internet and it allows the remote system to send feedback information which may be in the form of visual or force signals. Time delay experiments were conducted on the platform and the effects of time delay on the FRMC system operation have been studied and delineated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability," quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symptomatic recovery after acute vestibular neuritis (VN) is variable, with around 50% of patients reporting long term vestibular symptoms; hence, it is essential to identify factors related to poor clinical outcome. Here we investigated whether excessive reliance on visual input for spatial orientation (visual dependence) was associated with long term vestibular symptoms following acute VN. Twenty-eight patients with VN and 25 normal control subjects were included. Patients were enrolled at least 6 months after acute illness. Recovery status was not a criterion for study entry, allowing recruitment of patients with a full range of persistent symptoms. We measured visual dependence with a laptop-based Rod-and-Disk Test and severity of symptoms with the Dizziness Handicap Inventory (DHI). The third of patients showing the worst clinical outcomes (mean DHI score 36–80) had significantly greater visual dependence than normal subjects (6.35° error vs. 3.39° respectively, p = 0.03). Asymptomatic patients and those with minor residual symptoms did not differ from controls. Visual dependence was associated with high levels of persistent vestibular symptoms after acute VN. Over-reliance on visual information for spatial orientation is one characteristic of poorly recovered vestibular neuritis patients. The finding may be clinically useful given that visual dependence may be modified through rehabilitation desensitization techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oncological patients are submitted to invasive exams in order to obtain an accurate diagnosis; these procedures may cause maladaptative reactions (fear, anxiety and pain). Particularly in breast cancer, the most common diagnose technique is the incisional biopsy. Most of the patients are unaware about the procedure and for that reason they may focus their thoughts on possible events such as pain, bleeding, the anesthesia, or the later surgical wound care. Anxiety and pain may provoke physiological, behavioral and emotional complications, and because of this reason, the Behavioral Medicine trained psychologist takes an active role before and after the biopsy. The aim of this study was to evaluate the effect of a cognitive-behavioral program to reduce anxiety in women submitted to incisional biopsy for the first time. There were 10 participants from the Hospital Juárez de México, Oncology service; all of them were treated as external patients. The intervention program focused in psycho-education and passive relaxation training using videos, tape-recorded instructions and pamphlets. Anxiety measures were performed using the IDARE-State inventory, and a visual-analogue scale of anxiety (EEF-A), and the measurement of blood pressure and heart rate). Data were analyzed both intrasubject and intersubject using the Wilcoxon test (p≤0.05). The results show a reduction in anxiety (as in punctuation as in ranges) besides, a reduction in the EEF-A.