894 resultados para Varying boundary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments of the Argo and Gascoyne abyssal plains are generally lean in organic matter, are immature, and contain hydrocarbons trapped during sediment deposition rather than those generated during sediment catagenesis. TOC concentrations in the Argo Abyssal Plain Cenozoic sediments are 0.5 wt%, and organic matter appears to be from mixed marine and reworked, degraded, organic matter sources, with the latter being contributed by turbidity flows from the nearby continental margin. TOC concentrations within the Cenozoic sediments of the Gascoyne Abyssal Plain are mostly undetectable (<0.1 wt%). Biomarker distributions determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS) indicate that organic matter extracted from the Lower Cretaceous sediments from both sites is predominantly marine with varying contributions from terrestrial organic matter. The specific marine biomarker, 24-n-propylcholestane is in relatively high abundance in all samples. In addition, the relatively high abundance of the 4-methylsteranes with the 23,24-dimethyl side chain (in all samples) indicates significant dinoflagellate contributions and marine organic matter. The ratios of n-C27/n-C17 reflect relative contributions of marine vs. terrestrial organic matter. TOC, while generally low at Argo, is relatively high near the Barremian/Aptian boundary (one sample has a TOC of 5.1 wt%) and the Aptian/Albian boundary (up to 1.3 wt% TOC), and two samples from the Barremian and Aptian sections contain relatively high proportions of terrestrial organic carbon. TOC values in the Lower Cretaceous sediments from Gascoyne Abyssal Plain are low (<0.1 wt%) near the Aptian/Barremian boundary. TOC values are higher in older sediments, with maxima in the upper Barremian (1.02 wt%), the Barremian/Hauterivian (0.6 wt%), and Valanginian (1.8 wt%). Sediments from the upper Barremian contain higher amounts of terrestrial organic carbon than older sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified. Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in delta18O values coded as "Oi" and "Mi" events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific. Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional consequences of the biotic extinctions and of the changes in biological productivity that occurred at the time of the Cretaceous/Tertiary (K/T) boundary were investigated by comparison of organic matter in sediments from three southern Tethyan margin locations. Organic matter characterization comprised Rock-Eval pyrolysis and organic carbon measurements. Low concentrations of organic matter precluded additional detailed determinations. At all three locations, the organic matter has been microbially reworked and evidently was deposited in oxygenated marine environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three uppermost Cretaceous through basal Paleocene stratigraphic sequences are examined for planktic foraminiferal assemblage stability and temporal succession patterns. These sequences are at mid-latitude South Atlantic DSDP Site 528, then-equatorial Pacific DSDP Site 577 and the Tethyan shelf Ben Gurion section of the Negev, Israel. In order to better estimate biogeographic patterns and habitat preferences, the results of these analyses are compared to previous Cretaceous biogeographic studies and to previous analyses of Cretaceous-Tertiary (K/T) boundary shelf and epicontinental sections. Results indicate that immediately following the K/T boundary, the examined epicontinental and open-ocean sites were exploited primarily by previously epicontinental planktic foraminiferal assemblages. This pattern of K/T boundary assemblage dominance suggests the geologically instantaneous break-down of Late Cretaceous epicontinental and open-ocean biogeographic provincialization. This shift in open-ocean foraminiferal assemblages is not consistent with models of nonselective K/T boundary extinctions, but is consistent with models of extinction resistence and offshore expansion of nearshore taxa. The re-establishment of stable biogeographic differences between open-ocean and epicontinental planktic foraminiferal assemblages occurs by the basal Parvularugoglobigerina eugubina Zone. At open-ocean sites 528 and 577 and the outershelf Ben Gurion section, P0 and P. eugubina Zone faunal records are marked by a pronounced alternation between Paleocene biserial- and non-biserial-dominated assemblages, This alternation appears strongly damped at shelf and epicontinental sections previously examined. The first appearance and peak magnitude of abundant earliest Paleocene trochospiral forms (Parvularugoglobigerina, Eoglobigerina, Morozovella, Globoconusa) also vary from site to site and may depend closely on levels of primary carbonate productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eocene-Oligocene (E-O) boundary interval is considered to be one of the major transitions in Earth's climate, witnessing the first major expansion of the East Antarctic Ice Sheet. However, the extent of the associated climatic cooling, especially for high northern latitude continental landmasses, is poorly constrained. In this study we reconstruct the first mean annual air temperature (MAAT) for the Greenland landmass during the late Eocene and early Oligocene by applying a new proxy based on the distribution of branched tetraether lipids derived from soil bacteria preserved in a marine sediment core from the Greenland Basin. The temperature estimates are compared with a composite continental temperature record based on bio-climatic analysis of pollen assemblages. Both proxies reveal comparable late Eocene MAATs of ~13-15 °C and a gradual long-term cooling of ~3-5 °C starting near the E-O boundary. These data are in agreement with other MAAT reconstructions from northern midlatitude continents and suggest a general cooling of the Northern Hemisphere during the E-O transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian-Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration of 6.15 ± 0.05 Ma for the Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a astronomical solution. This section is thus proposed as an excellent reference for the upper Campanian-Maastrichtian in the Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the d18O value of the smectite (27.2 ± 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the d18O value of this clay mineral (27.1 ± 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.