993 resultados para Vanadium Redox Flow Battery
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.
Resumo:
Cu catalysts supported on CeO2, TiO2 and CeO2/TiO2 were prepared by precipitation method and used for preferential oxidation of carbon monoxide contained in a hydrogen flow generated by methane steam reforming. The samples were characterized by XRD, BET and TPR techniques. The catalytic properties were studied in the 50-330ºC range by using a quartz micro-reactor vertically positioned on an electrical furnace. The results showed that the small copper particles generated with the lower metal content are the most easily reducible and give the best catalytic performance. In respect of support effect, the strong metal-support interaction and the redox characteristics of the CuOx-CeO2 series resulted in the best catalytic results, especially with the sample with 1% copper content.
Resumo:
A highly sensitive spectrophotometric method for the analysis of catecholamine drugs; L-dopa and methyldopa, is described. The analysis is based on the reaction of drug molecules with vanadium (V) which is reduced to vanadium (IV) and form complex with eriochrome cyanine R to give products having maximum absorbance (lmax) at 565 nm. Beer's law is obeyed in the range 0.028-0.84 and 0.099-0.996 mg mL-1 for L-dopa and methyldopa, respectively. The statistical analysis as well as comparison with reported methods demonstrated high precision and accuracy of the proposed method. The method was successfully applied in the analysis of pharmaceutical preparations.
Resumo:
It was found that cinnamic acid can react with potassium permanganate in the acidic medium and produce chemiluminescence, which was greatly enhanced by glyoxal. Under the optimum conditions, the linear range for the determination of cinnamic acid was 1.0×10-8 to 1.0×10-4 mol L-1 with a detection limit of 8.0×10-9 mol L-1, the relative standard deviation was 1.7% for 2.0×10-6 mol L-1 cinnamic acid solution in nine repeated measurements. This method was found to be novel0simple0fast and sensitive, it was successfully applied to the determination of cinnamic acid in human urine. Furthermore, the possible reaction mechanism was also discussed.
Resumo:
We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1) achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators) AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
Two parallel tests were carried out to evaluate barium solubility in soils treated with barite under reducing conditions: one in leaching columns and another with potted plants cultivated with rice. Soils were treated with three doses of barite and kept at two humidity levels. The reduction (-200 mV) condition promoted an increase in barium in the geochemical fraction of higher liability, higher concentrations of barium in the leached extracts, and higher absorption by rice plants. As a result of increased uptake and accumulation of barium, the plants showed stunted growth
Resumo:
Previous studies have verified that free radicals such as quinone moieties in organic matter participate in the redox reactions in natural systems. These functional groups were positively correlated with the increase in aromaticity and hydrophobicity of the humic substances. As an alternative to relatively complex and expensive spectroscopic methods, the redox properties of the humic substances, determined by potentiometric titrations, have been used to evaluate organic carbon stability in soil and sediments. The present study aimed to perform organic matter fractionation and isolation of humic substances from deep oceans in different isobaths (750; 1,050; 1,350; 1,650; 1,950 m) to determine their redox properties by iodimetric titrations under an inert atmosphere and specified conditions of pH and ionic strength. Sediment samples were collected to the North and South of platforms of petroleum exploration located in the North of Rio de Janeiro State, Brazil. Fractions of organic carbon and redox properties of humic substances varied with origin and depth of the samples and with position North and South of the petroleum exploration area.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
The mixture of synthetic and natural materials yields a material with improved physical-chemical properties. One way of obtaining this kind of material is through graft copolymerization. Some natural materials have been used in graft copolymerization with synthetic monomers. In this work, graft copolymerization of butyl acrylate (BA) onto starch using a redox initiator system was carried out. The graft yield was evaluated for different reaction conditions. The graft copolymer was characterized by infrared spectroscopy, thermal analysis and scanning electron microscopy (SEM).
Resumo:
The optimization of the anaerobic degradation of the azo dye Remazol golden yellow RNL was performed according to multivariate experimental designs: a 2² full-factorial design and a central composite design (CCD). The CCD revealed that the best incubation conditions (90% color removal) for the degradation of the azo dye (50 mg L- 1) were achieved with 350 mg L- 1 of yeast extract and 45 mL of anaerobic supernatant (free cell extract) produced from the incubation of 650 mg L- 1 of anaerobic microorganisms and 250 mg L- 1 of glucose. A first-order kinetics model best fit the experimental data (k = 0.0837 h- 1, R² = 0.9263).
Resumo:
This paper presents a proposal for using recycled graphite electrodes obtained from exhausted commercial 1.5 V batteries and its application in electroanalysis. The electrode could be prepared by the students and applied in the simple didactic experiments suggested, such as determination of active electrode area, cyclic voltammetry and useful potential range (also called "potential window"), demonstration and effect of scan rate on cyclic voltammograms. The possibility of using the graphite electrode in quantitative analysis was also demonstrated using the ferricyanide/ferrocyanide reversible redox couple ([Fe(CN)6]3-/[Fe(CN)6]4-) as an electrochemical probe by the dependence of peak current with the analyte concentration and flow injection analysis with amperometric detection.
Resumo:
Direct measurements of Redox Potential (ORP) have been used to infer the degree of electrons availability in waters, wastewaters, sediments and soils. Although the interpretation of the results obtained in direct measurements is not trivial, this parameter is part of a list of compulsory determinations required by many Environmental State Agencies as well as consulting companies. Nonetheless, the vast majority of E H reported values are not corrected to the reference electrode used, what makes most of the data incomparable with the literature, and not suitable for a correct environmental diagnostics.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.
Resumo:
In the past few years, photoredox catalysis has become a powerful tool in the field of organic synthesis. Using this efficient method, it is possible to excite organic compounds from visible light and attain alternative mechanistic pathways for the formation of chemical bonds, a result which is not obtainable by classical methods. The rapid growth of work in the area of photoredox catalysis is due to its low cost, broad chemical utility protocols, and, especially, its relevancy from the green and sustainable chemistry viewpoints. Thus, this study proposes a brief theoretical discussion of and highlights recent advances in visible-light-induced photoredox catalysis through the analysis of catalytic cycles and intermediates.