911 resultados para Urban Informatics, Sustainability, Energy Monitoring, Interaction Design, Visualisation


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Transport and its energetic and environmental impacts affect our daily lives. The transport sector is the backbone of the United Kingdom’s economy with 2.3 million people being employed in this sector. With a high dependency on transport for passengers and freight and with the knowledge that oil reserves are rapidly decreasing a solution has to be identified for conserving fuel. Passenger vehicles account for 61% of the transport fuel consumed in the U.K. and should be seen as a key area to tackle. Despite the introduction and development of electric powered cars, the widespread infrastructure that is required is not in place and has attributed to their slow uptake, as well as the fact that the electric car’s performance is not yet comparable with the conventional internal combustion engine. The benefits of the introduction of kinetic energy recovery systems to be used in conjunction with internal combustion engines and designed such that the system could easily be fitted into future passenger vehicles are examined. In this article, a review of automobile kinetic energy recovery system is presented. It has been argued that the ultracapacitor technology offers a sustainable solution. An optimum design for the urban driving cycle experienced in the city of Edinburgh has been introduced. The potential for fuel savings is also presented

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the project

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

With appropriate planning and design, Olympic urban development has the potential to leave positive environmental legacies to the host city and contribute to environmental sustainability. This book explains how a modern Olympic games can successfully develop a more sustainable design approach by learning from the lessons of the past and by taking account of the latest developments. It offers an assessment tool that can be tailored to individual circumstances – a tool which emerges from the analysis of previous summer games host cities and from techniques in environmental analysis and assessment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Various sources indicate that threats to modern cities lie in the availability of essential streams, among which energy. Most cities are strongly reliant on fossil fuels; not one case of a fully self-sufficient city is known. Engineering resilience is the rate at which a system returns to a single steady or cyclic state following a perturbation. Certain resilience, for the duration of a crisis, would improve the urban capability to survive such a period without drastic measures.
The capability of cities to prepare for and respond to energy crises in the near future is supported by greater or temporary self-sufficiency. The objective of the underlying research is a model for a city – including its surrounding rural area – that can sustain energy crises. Therefore, accurate monitoring of the current urban metabolism is needed for the use of energy. This can be used to pinpoint problem areas. Furthermore, a sustainable energy system is needed, in which the cycle is better closed. This will require a three-stepped approach of energy savings, energy exchange and sustainable energy generation. Essential is the capacity to store energy surpluses for periods of shortage (crises).
The paper discusses the need for resilient cities and the approach to make cities resilient to energy crises.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Energy harvesting from ambient vibration is a promising field, especially for applications in larger infrastructures such as bridges. These structures are more frequently monitored for damage detection because of their extended life, increased traffic load and environmental deterioration. In this regard, the possibility of sourcing the power necessary for the sensors from devices embedded in the structure, thus cutting the cost due to the management of battery replacing over the lifespan of the structure, is particularly attracting. Among others, piezoelectric devices have proven to be especially effective and easy to apply since they can be bonded to existing host structure. For these devices the energy harvesting capacity is achieved directly from the variation in the strain conditions from the surface of the structure. However these systems need to undergo significant research for optimisation of their harvesting capacity and for assessing the feasibility of application to various ranges of bridge span and load. In this regard scaled bridge prototypes can be effectively used not only to assess numerical models and studies in an inexpensive and repeatable way but also to test the electronic devices under realistic field conditions. In this paper the theory of physical similitude is applied to the design of bridge beams with embedded energy harvesting systems and health monitoring sensors. It will show both how bridge beams can be scaled in such a way to apply and test energy harvesting systems and 2) how experimental data from existing bridges can be applied to prototypes in a laboratory environment. The study will be used for assessing the reliability of the system over a train bridge case study undergoing a set load cycles and induced localised damage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Issues of authenticity and identity are particularly significant in cities where social and cultural change is shaping active transformation of its urban fabric and structure in the post-war condition. In search of sustainable future, Iraqi cities are stretched between the two ends of the spectrum, authentic quarters with its traditional fabric and modern districts with their global sense of living. This paper interrogates the reciprocal influences, distinct qualities and sustainable performance of both authentic and modern quarters of Erbil, the
capital of the Iraqi province of Kurdistan, as factors in shaping sustainable urban forms for Iraqi cities. In doing so, the paper, firstly, seeks to highlight the urban identity as an effective factor in relation to sustainable urban form. Secondly, the city of Erbil in Iraq has been chosen as a field study, due to its regional, social, political and historical role in the region. Thirdly, the study emphasises the dynamic activities and performance of residential projects according to rational sustainable criteria. The research concludes that urban identity and the sense of place in traditional and historical places should inform design strategies in order to achieve a more sustainable urban context.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Urban Oasis celebrates Ajman’s history as well as encourages a greater future. Stitching into the existing urban fabric of Ajman and the surrounding cities, the master plan provides an entrance that encases a number of different events. From studying other successful event cities, it became apparent the need for a variety of events over a yearly basis.

Sustainability is another key feature of the master plan. From the way the urban network of streets are formed and orientated to how energy is produced and conserved. Another sustainable aspect that drove the master plan was the retention of the camel track. An important and incredible event in itself, the camel track provides an opportunity to celebrate Ajman’s culture and retain an important part of its history.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cities dominated by impervious artificial surfaces can experience myriad negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the MPC green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis investigates the use and significance of X-ray crystallographic visualisations of molecular structures in postwar British material culture across scientific practice and industrial design. It is based on research into artefacts from three areas: X-ray crystallographers’ postwar practices of visualising molecular structures using models and diagrams; the Festival Pattern Group scheme for the 1951 Festival of Britain, in which crystallographic visualisations formed the aesthetic basis of patterns for domestic objects; and postwar furnishings with a ‘ball-and-rod’ form and construction reminiscent of those of molecular models. A key component of the project is methodological. The research brings together subjects, themes and questions traditionally covered separately by two disciplines, the history of design and history of science. This focus necessitated developing an interdisciplinary set of methods, which results in the reassessment of disciplinary borders and productive cross-disciplinary methodological applications. This thesis also identifies new territory for shared methods: it employs network models to examine cross-disciplinary interaction between practitioners in crystallography and design, and a biographical approach to designed objects that over time became mediators of historical narratives about science. Artefact-based, archival and oral interviewing methods illuminate the production, use and circulation of the objects examined in this research. This interdisciplinary approach underpins the generation of new historical narratives in this thesis. It revises existing histories of the cultural transmissions between X-ray crystallography and the production and reception of designed objects in postwar Britain. I argue that these transmissions were more complex than has been acknowledged by historians: they were contingent upon postwar scientific and design practices, material conditions in postwar Britain and the dynamics of historical memory, both scholarly and popular. This thesis comprises four chapters. Chapter one explores X-ray crystallographers’ visualisation practices, conceived here as a form of craft. Chapter two builds on this, demonstrating that the Festival Pattern Group witnesses the encounter between crystallographic practice, design practice and aesthetic ideologies operating within social networks associated with postwar modernisms. Chapters three and four focus on ball-and-rod furnishings in postwar and present-day Britain, respectively. I contend that strong relationships between these designed objects and crystallographic visualisations, for example the appellation ‘atomic design’, have been largely realised through historical narratives active today in the consumption of ‘retro’ and ‘mid-century modern’ artefacts. The attention to contemporary historical narratives necessitates this dual historical focus: the research is rooted in the period from the end of the Second World War until the early 1960s, but extends to the history of now. This thesis responds to the need for practical research on methods for studying cross-disciplinary interactions and their histories. It reveals the effects of submitting historical subjects that are situated on disciplinary boundaries to interdisciplinary interpretation. Old models, such as that of unidirectional ‘influence’, subside and the resulting picture is a refracted one: this study demonstrates that the material form and meaning of crystallographic visualisations, within scientific practice and across their use and echoes in designed objects, are multiple and contingent.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015