941 resultados para UNITARITY CONSTRAINTS
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a stable MPC that maximizes the domain of attraction of the closed-loop system is proposed. The proposed approach is suitable to real applications in the sense that it accounts for the case of output tracking, it is offset free if the output target is reachable and minimizes the offset if some of the constraints are active at steady state. The new approach is based on the definition of a Minkowski functional related to the input and terminal constraints of the stable infinite horizon MPC. It is also shown that the domain of attraction is defined by the system model and the constraints, and it does not depend on the controller tuning parameters. The proposed controller is illustrated with small order examples of the control literature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.
Resumo:
This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.
Resumo:
This work presents an alternative way to formulate the stable Model Predictive Control (MPC) optimization problem that allows the enlargement of the domain of attraction, while preserving the controller performance. Based on the dual MPC that uses the null local controller, it proposed the inclusion of an appropriate set of slacked terminal constraints into the control problem. As a result, the domain of attraction is unlimited for the stable modes of the system, and the largest possible for the non-stable modes. Although this controller does not achieve local optimality, simulations show that the input and output performances may be comparable to the ones obtained with the dual MPC that uses the LQR as a local controller. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs. Published by Elsevier Ltd.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Chautemsia calcicola: A new genus and species of Gloxinieae (Gesneriaceae) from Minas Gerais,.Brazil
Resumo:
A new species of Gesneriaceae discovered in remnants of deciduous forests on limestone outcrops in Minas Gerais, Brazil, is described and compared with morphologically related taxa. This plant presents the diagnostic features of the tribe Gloxinieae, but a unique combination of morphological traits distinguishes this taxon from previously described genera. Its phylogenetic position was inferred based on analyzing DNA sequences variation of five loci: the rpl1 intron, rps16 intron, trnL-F intron-spacer, a portion of the plastid-expressed glutamine synthetase gene (ncpGS) and the ribosomal DNA internal transcribed spacer (ITS). Molecular phylogenetic analyses confirm the position of this new species in the Gloxinieae, as a sister lineage of a clade including the Brazilian genera Mandirola and Goyazia. However, tests using topological constraints do not reject the alternative relationship that places this taxon with Gloxiniopsis in a monophyletic group. To accomodate this species in the current generic circumscription of gloxinieae, the new genus chautemsia A.O. Araujo V.C. Souza is created.