952 resultados para Turbulence polymers viscoelastic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are “minimal” in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx ≳ 2Lz, Ly ≳ Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx ≳ 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wall-bounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ∼20S−1, and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the wind flow around buildings has a great interest from the point of view of the wind energy assessment, pollutant dispersion control, natural ventilation and pedestrians wind comfort and safety. Since LES turbulence models are computationally time consuming when applied to real geometries, RANS models are still widely used. However, RANS models are very sensitive to the chosen turbulence parametrisation and the results can vary according to the application. In this investigation, the simulation of the wind flow around an isolated building is performed using various types of RANS turbulence models in the open source code OpenFOAM, and the results are compared with benchmark experimental data. In order to confirm the numerical accuracy of the simulations, a grid dependency analysis is performed and the convergence index and rate are calculated. Hit rates are calculated for all the cases and the models that successfully pass a validation criterion are analysed at different regions of the building roof, and the most accurate RANS models for the modelling of the flow at each region are identified. The characteristics of the wind flow at each region are also analysed from the point of view of the wind energy generation, and the most adequate wind turbine model for the wind energy exploitation at each region of the building roof is chosen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugated organic semiconductors have been submitted to various electrical measurement techniques in order to reveal information about shallow levels and deep traps in the forbidden gap. The materials consisted of poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV), poly(3-methylthiophene) (PMeT), and alpha-sexithienyl (alpha T6) and the employed techniques were IV, CV, admittance spectroscopy, TSC, capacitance and current transients. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier diodes are made from virtually all semiconducting polymers. Application of Schottky barriers on the development of electronic devices built from semiconducting polymers prompted this research. The article investigated the dc and ac admittance of Schottky barrier which occur at the interface between aluminum and poly(3-methyl thiophene) made ready by electropolymerisation. The experiment revealed that the interfacial layers occurring in polymer Schottky barriers is significant in the response of the controlling device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electro-deposited poly(3-methylthiopene), PMeT, have been studied by admittance spectroscopy, capacitance-voltage and current-voltage measurements, and optically-induced current transients. The loss-tangents show the existence of interface states that can be removed by vacuum annealing, also visible in the transients. Furthermore, the CV curves don't substantiate the idea of movement of the dopant ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of the present study were to determine the effect of firefighter's boots on the vertical component of the ground reaction force (GRF) at heel strike, also known as heel strike transient and to analyze the effect of the viscoelastic insoles placed into the firefighter’s boots on this force during the gait. The magnitude of the impact force (FZI) from the vertical ground reaction force, the time to the production of this force (TZI) and the loading rate (GC) were registered. 39 firefighters without any pathology during 2 years before the study were recruited. Three different walking conditions were tested: 1) gait with firefighter's boots, 2) gait with firefighter's boots and viscoelastic insoles and 3) gait with sport shoes. The results showed a higher production and magnitude of the impact force during gait with firefighter's boots than during gait with sport shoes (13,1 vs. 2,6 % of occurrence of the impact force and 61,39 ± 35,18 %BW (body weight) vs. 49,38 ± 22,99 %BW, respectively). The gait with viscoelastic insoles placed into the firefighter's boots did not show significant differences in any of the parameters characterizing the impact force compared to the gait without insoles. The results of this study show a lower cushioning of the impact force during the gait with firefighter's boots in comparison to the gait with sport shoes and the inefficiency of the viscoelastic insoles placed inside the firefighter's boots to ameliorate the cushioning of the impact force at natural walking speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugated organic semiconductors have been submitted to various electrical measurement techniques in order to reveal information about shallow levels and deep traps in the forbidden gap. The materials consisted of poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV), poly(3-methylthiophene) (PMeT), and alpha-sexithienyl (alpha T6) and the employed techniques were IV, CV, admittance spectroscopy, TSC, capacitance and current transients. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier diodes are made from virtually all semiconducting polymers. Application of Schottky barriers on the development of electronic devices built from semiconducting polymers prompted this research. The article investigated the dc and ac admittance of Schottky barrier which occur at the interface between aluminum and poly(3-methyl thiophene) made ready by electropolymerisation. The experiment revealed that the interfacial layers occurring in polymer Schottky barriers is significant in the response of the controlling device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electro-deposited poly(3-methylthiopene), PMeT, have been studied by admittance spectroscopy, capacitance-voltage and current-voltage measurements, and optically-induced current transients. The loss-tangents show the existence of interface states that can be removed by vacuum annealing, also visible in the transients. Furthermore, the CV curves don't substantiate the idea of movement of the dopant ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystalline metal phosphonates are referred to as a type of structurally versatile coordination polymers [1]. Many of them contain guest molecules (H2O, heterocyclics, etc.), acidic sites and, furthermore, their structure can be also amenable for post‐synthesis modifications in order to enhance desired properties [2]. In the present work, we examine the relationships between crystal structure and proton conductivity for several metal phosphonates derive from multifunctional ligands, such as 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA) [3] and 2-hydroxyphosphonoacetic acid (H3HPAA). Crystalline divalent metal derivatives show a great structural diversity, from 1D to 3D open-frameworks, possessing hydrogen-bonded water molecules and acid groups. These solids present a proton conductivity range between 7.2·10-6 and 1.3·10−3 S·cm-1. Upon exposure to ammonia vapor, from an aqueous solution, solid state transformations are observed accompanied of enhance proton conductivities. The stability of these solids under different environment conditions (temperature and relative humidities) as well as the influence of the ammonia adsorption on the proton conduction properties of the resulting solids will be discussed.