942 resultados para Trapping
Resumo:
Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.
Resumo:
Twenty samples of siltstones and sandstones were taken from Ocean Drilling Program Site 1276 during Leg 210 for fluid inclusion studies. With the exception of one sample of vein calcite, all inclusions were in quartz grains. The results of fluid-inclusion petrology and microthermometry indicate the presence of three fluid inclusion types (Types 1, 2, and 3). Type 1 fluid inclusions are two-phase (liquid + vapor) aqueous inclusions, and Type 2 inclusions are monophase fluid inclusions (liquid or vapor). These are common in all samples and are formed either as primary isolated inclusions or as secondary inclusions as trails along annealed fractures in the grain. Type 3 fluid inclusions are three-phase (liquid + vapor + solid) inclusions. Type 3 inclusions are rare and are observed as isolated inclusions or in a cluster with other types (i.e., Types 1 and 2). The predominant population throughout the different units sampled is two-phase (liquid + vapor) aqueous fluid inclusions (i.e., Type 1). The temperature of homogenization (TH) bivariate plots for Type 1 inclusions shows dominance throughout the hole of low- to medium-salinity fluids with minimum trapping temperatures between 150° and 400°C.
Resumo:
At the Peruvian convergent margin, two distinct pore fluid regimes are recognized from differences in their Cl- concentrations. The slope pore fluids are characterized by low Cl- concentrations, but elevated Br- and I- concentrations due to biogenic production. The shelf pore fluids exhibit elevated Cl- and Br- concentrations due to diffusive mixing with an evaporitic brine. In the slope pore fluids, the Br-, I-, and NH4+ concentrations are elevated following bacterial decomposition of organic matter, but the I- concentrations are in excess of those expected based on mass balance calculations using NH4+ and Br- concentrations. The slope sediment organic matter, which is enriched in iodine from oxidationreduction processes at the oxygenated sediment-water interface, is responsible for this enrichment. The increases in dissolved I- and the I- enrichments relative to NH4+ and Br- correlate well with sedimentation rates because of differential trapping following regeneration. The pore-fluid I-/Br- ratios suggest that membrane ion fiitration is not a major cause of the decreases in Cl- concentrations. Other possible sources for low Cl- water, including meteoric water, clathrate dissociation, and/or mineral dehydration reactions, imply that the diluting component of the slope low-Cl- fluids has flowed at least 1 km through the sediment. The low bottom-water oxygenation in the shelf is responsible for the low (if any) enrichment of iodine in the shelf sediments. Fluctuations in bottom-water oxygen concentrations in the past, however, may be responsible for the observed variations in the sediment I/Br ratios. Comparison of Na+/Cl- and Br-/Cl- molar ratios in the pore fluids shows that the shelf high-Cl- fluid formed from mixing with a brine that formed from seawater concentrated by twelve to nineteen times and probably was modified by halite dissolution. This dense brine, located below the sediment sections drilled, appears to have flowed a distance >500 km through the sediment.
Resumo:
Results of geochemical studies of suspended matter from the water mass over the hydrothermal field at 9°50'N on the East Pacific Rise are reported. The suspended matter was sampled in background waters, in the buoyant plume, and in the near-bottom waters. Contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the elements in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters trace elements are associated with Fe, Zn, and Cu (probably, with their sulfides formed during mixing of hydrothermal fluids with seawater). Chemical composition of sediment matter precipitated in a sediment trap was similar to the near-bottom suspended matter.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
Mineral compositions of residual peridotites collected at various locations in the Mid-Atlantic Ridge south of the Kane transform (MARK area) are consistent with generally smaller degrees of melting in the mantle near the large offset Kane transform than near the other, small offset, axial discontinuities in the area. We propose that this transform fault effect is due to along-axis variations in the final depth of melting in the subaxial mantle, reflecting the colder thermal regime of the ridge near the Kane transform. Calculations made with a passive mantle flow regime suggest that these along-axis variations in the final depth of melting would not produce the full range of crustal thickness variations observed in the MARK area seismic record. It is therefore likely that the transform fault effect in the MARK area is combined with other mechanisms capable of producing crustal thickness variations, such as along-axis melt migration, the trapping of part of the magma in a cold mantle root beneath the ridge, or active mantle upwelling.
Resumo:
Understanding changes over time in the distribution of interacting native and invasive species that may be symptomatic of competitive exclusion is critical to identify the need for and effectiveness of management interventions. Occupancy models greatly increase the robustness of inference that can be made from presence/absence data when species are imperfectly detected, and recent novel developments allow for the quantification of the strength of interaction between pairs of species. We used a two-species multi-season occupancy model to quantify the impact of the invasive American mink on the native European mink in Spain through the analysis of their co-occurrence pattern over twelve years (2000 - 2011) in the entire Spanish range of European mink distribution, where both species were detected by live trapping but American mink were culled. We detected a negative temporal trend in the rate of occupancy of European mink and a simultaneous positive trend in the occupancy of American mink. The species co-occurred less often than expected and the native mink was more likely to become extinct from sites occupied by the invasive species. Removal of American mink resulted in a high probability of local extinction where it co-occurred with the endemic mink, but the overall increase in the probability of occupancy over the last decade indicates that the ongoing management is failing to halt its spread. More intensive culling effort where both species co-exist as well as in adjacent areas where the invasive American mink is found at high densities is required in order to stop thedecline of European mink.
Resumo:
The Bienaventurada mine operates a polymetallic Ag-Pb-Zn (Cu, Au) vein system of the low sulphidation epithermal type. Fluid inclusions, FI, are abundant in quartz, sphalerite and adularia. FI petrography demonstrates typical primary growth zoning which occurs frequently in crystalline quartz, and defines the most common primary FI. These are usually very small, but several types of primary, P, and secondary, S, FI Assemblages (FIAs) comprising FI of measurable size (3 to > 100 μm) can also be identified through careful petrographic work. The fluids are aqueous and undersaturated, and no evidence of CO2 was found; the degree of fill is usually high (~70-80 %) in the L-rich inclusions, but extremely low in V-rich inclusions. The measured microthermometric values are very consistent in the FIAs selected; they are for the most part roughly similar in the P and S assemblages: the median is typically ~258ºC for total homogenization temperatures, Th, and -1.5 ºC for ice melting temperatures, Tm (corresponding to 2.57 wt% NaCl eq). The widespread occurrence of L-rich and V-rich FI in the same FIA and the consistent Th values point to an extensive boiling system along the vein. In these conditions, Th equals T of trapping, and the ores are assumed to have been precipitated from an aqueous low salinity boiling fluid, of likely meteoric origin, at some 250-280º C, under ~500 m hydrostatic head.
Resumo:
Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements. 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. One of the main concerns of CCS is whether CO2 may remain confined within the geological formation into which it is injected since post-injection CO2 migration in the time scale of years, decades and centuries is not well understood. Theoretically, CO2 can be retained at depth i) as a supercritical fluid (physical trapping), ii) as a fluid slowly migrating in an aquifer due to long flow path (hydrodynamic trapping), iii) dissolved into ground waters (solubility trapping) and iv) precipitated secondary carbonates. Carbon dioxide will be injected in the near future (2012) at Hontomín (Burgos, Spain) in the frame of the Compostilla EEPR project, led by the Fundación Ciudad de la Energía (CIUDEN). In order to detect leakage in the operational stage, a pre-injection geochemical baseline is presently being developed. In this work a geochemical monitoring design is presented to provide information about the feasibility of CO2 storage at depth.
Resumo:
As wafer-based solar cells become thinner, light-trapping textures for absorption enhancement will gain in importance. In this work, crystalline silicon wafers were textured with wavelength-scale diffraction grating surface textures by nanoimprint lithography using interference lithography as a mastering technology. This technique allows fine-tailored nanostructures to be realized on large areas with high throughput. Solar cell precursors were fabricated, with the surface textures on the rear side, for optical absorption measurements. Large absorption enhancements are observed in the wavelength range in which the silicon wafer absorbs weakly. It is shown experimentally that bi-periodic crossed gratings perform better than uni-periodic linear gratings. Optical simulations have been made of the fabricated structures, allowing the total absorption to be decomposed into useful absorption in the silicon and parasitic absorption in the rear reflector. Using the calculated silicon absorption, promising absorbed photocurrent density enhancements have been calculated for solar cells employing the nano-textures. Finally, first results are presented of a passivation layer deposition technique that planarizes the rear reflector for the purpose of reducing the parasitic absorption.
Resumo:
Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75
Resumo:
Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion (helium) irradiation, respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence on a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Physically based Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented in this conference for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and impurities (He and C) during the irradiation stage and the subsequent annealing steps. In addition, it allows us to vary the sample temperature to follow the severe thermo-mechanical effects of the pulses. In this work we will describe the helium kinetics for different irradiation conditions. A competition is established between fast helium cluster migration and trapping at large defects, being the temperature a determinant factor. In fact, high temperatures (induced by the pulses) are responsible for large vacancy cluster formation and subsequent additional trapping with respect to low flux irradiation.
Resumo:
Light trapping is becoming of increasing importance in crystalline silicon solar cells as thinner wafers are used to reduce costs. In this work, we report on light trapping by rear-side diffraction gratings produced by nano-imprint lithography using interference lithography as the mastering technology. Gratings fabricated on crystalline silicon wafers are shown to provide significant absorption enhancements. Through a combination of optical measurement and simulation, it is shown that the crossed grating provides better absorption enhancement than the linear grating, and that the parasitic reflector absorption is reduced by planarizing the rear reflector, leading to an increase in the useful absorption in the silicon. Finally, electro-optical simulations are performed of solar cells employing the fabricated grating structures to estimate efficiency enhancement potential.