999 resultados para Titanium carbide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of pore size on osteoblastic phenotype development in cultures grown on porous titanium (Ti). Porous Ti discs with three different pore sizes, 312 mu m (Ti 312), 130 mu m (Ti 130) and 62 mu m (Ti 62) were fabricated using a powder metallurgy process. Osteoblastic cells obtained from human alveolar bone were cultured on porous Ti samples for periods of up to 14 days. Cell proliferation was affected by pore size at day 3 (p = 0.0010), day 7 (p = 0.0005) and day 10 (p = 0.0090) in the following way: Ti 62 < Ti 130 < Ti 312. Gene expression of bone markers evaluated at 14 days was affected, RUNX2 (p = 0.0153), ALP (p = 0.0153), BSP (p = 0.0156), COL (p = 0.0156), and OPN (p = 0.0156) by pore size as follows: Ti 312 < Ti 130 < Ti 62. Based on these results, the authors suggest that porous Ti surfaces with pore sizes near 62 mu m, compared with those of 312 mu m and 130 mu m, yield the highest expression of osteoblast phenotype as indicated by the lower cell proliferation rate and higher gene expression of bone markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess the effect of nitrogen ion implantation on the flexibility of rotary nickel-titanium (NiTi) instruments as measured by the load required to bend implanted and nonimplanted instruments at a 30 degrees angle. Methods: Thirty K3 files, size #40, 0.02 taper and 25-mm length, were allocated into 2 groups as follows: group A, 15 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), voltage 200 KeV, current density 1 mu A/cm(2), temperature 130 degrees C, and vacuum conditions of 10 x 10(-6) mm Hg for 6 hours; and group B, 15 nonimplanted files. One extra file was used for process control. All instruments were subjected to bend testing on a modified troptometer, with measurement of the load required for flexure to an angle of 30 degrees. The Mann-Whitney U test was used for statistical analysis. Findings with P <.05 were considered significant. Results: The mean load required to bend instruments at a 30 degrees angle was 376.26 g for implanted instruments and 383.78 g for nonimplanted instruments. The difference was not statistically significant. Conclusions: Our findings show that nitrogen ion implantation has no appreciable effect on the flexibility of NiTi instruments. (J Endod 2012;38:673-675)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A myriad of titanium (Ti) surface modifications has been proposed to hasten the osseointegration. In this context, the aim of this study was to perform histomorphometric, cellular, and molecular analyses of the bone tissue grown in close contact with Ti implants treated by anodic spark deposition (ASD-AK). Acid-etched (AE) Ti implants either untreated or submitted to ASD-AK were placed into dog mandibles and retrieved at 3 and 8 weeks. It was noticed that both implants, AE and ASD-AK, were osseointegrated at 3 and 8 weeks. Histomorphometric analysis showed differences between treatments only for bone-to-implant contact, being higher on AE implants. Although not backed by histomorphometric results, gene expression of key bone markers was higher for bone grown in close contact with ASD-AK and for cells harvested from these fragments and cultured until subconfluence. Cell proliferation at days 7 and 10 and alkaline phosphatase activity at day 10 was higher on AE surfaces. No statistical significant difference was noticed for extracellular matrix mineralization at 17 days. Our results have shown that the Ti fixtures treated by ASD-AK allowed in vivo osseointegration and induced higher expression of key markers of osteoblast phenotype, suggesting that this surface treatment could be considered to produce implants for clinical applications. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:30923098, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of titanium tetrafluoride (TiF4) formulations on enamel carious demineralization in situ. Thirteen subjects took part in this cross-over, split-mouth, double-blind study performed in three phases of 14 d each. In each subject, two sound and two predemineralized specimens of bovine enamel were worn intra-orally and plaque accumulation was allowed. One sound and one predemineralized specimen in each subject was treated once with sodium fluoride (NaF) varnish or solution (Treatment A); TiF4 varnish or solution (Treatment B); or placebo varnish or no treatment (Treatment C). The initially sound enamel specimens were exposed to severe cariogenic challenge (20% sucrose, eight times daily for 5 min each time), whereas the predemineralized specimens were not. Eleven subjects were able to finish all experimental phases. The enamel alterations were quantified by surface hardness and transversal microradiography. Demineralization of previously sound enamel was reduced by all test formulations except for the NaF solution, while both TiF4 formulations were as effective as NaF varnish. For the predemineralized specimens, enamel surface hardness was increased only by TiF4 formulations, while subsurface mineral remineralization could not be seen in any group. Within the experimental protocol, TiF4 was able to decrease enamel demineralization to a similar degree as NaF varnish under severe cariogenic challenges, while only TiF4 formulations remineralized the enamel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-beta), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-beta and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:2629-2636, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg(CA) g(TiO2)(-1) and saturation coverage of 195.4 mg(CA) g(TiO2)(-1). A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs) harvested on titanium (Ti), using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs) on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Photoemissions-Elektronenmikroskopie ist eine hervorragend geeignete Methode zur Untersuchung dynamischer Vorgänge auf realen polykristallinen Oberflächen im sub-μm Bereich. Bei der Anwendung auf Adsorbatsysteme lassen sich geringe Bedeckungsunterschiede, sowie Adsorbatstrukturen und -phasen unterscheiden. Die Methode erlaubt dabei ein breites Anwendungsspektrum über weite Temperaturbereiche und Systeme unterschiedlichster Bindungsenergie. Bei der Chemisorption von Sauerstoff auf polykristallinen Metallen wird unterschiedliches Aufwachsverhalten in den Helligkeitswerten im Mikroskopbild widergespiegelt. Bei Kupferproben zeigen Oberflächen mit unterschiedlicher kristalliner Richtung aufgrund der Symmetrie des fcc-Gitters ein ähnliches Verhalten. Das hexagonale Gitter des Titans zeigt dagegen große Unterschiede im Adsorptionsverhalten in Abhängigkeit der kristallinen Richtung. Diese Unterschiede konnten auf verschiedene Haftkoeffizienten und Oxidationsstufen der Metalle zurückgeführt werden. In einem Modell zur Photostromanalyse konnte beim Kupfer der Übergang von verschiedenen Überstrukturen bei wachsender Bedeckung gezeigt und die Übergänge ermittelt werden.. Auf den Titanoberflächen wurde so das Wachstum der Oxide TiO, TiO2 und Ti2O3 unterschieden und die Übergänge des unterschiedlichen Wachstums ermittelt. Bei der thermischen Desorption der Schichten konnten unterschiedliche Haftkoeffizient auf einzelnen Kristalliten qualitativ gezeigt werden. Diese erstmalig eingesetzte Analysemethode weist Ähnlichkeiten zur Thermo-Desorptions-Spektroskopie (TDS) auf, zeigt jedoch ortsaufgelöst lokale Unterschiede auf polykristallinen Oberflächen. Bei thermisch gestützten Oberflächenreaktionen ließen sich die Reaktionskeime deutlich identifizieren und mit einer Grauwertanalyse konnte die Oxidation der karbidischen Lagen zu Kohlenmonoxid und die Metalloxidation unterschieden werden. Dabei konnte gezeigt werden, daß die Reaktionskeime nur an Plattengrenzen auftreten, nicht jedoch auf der Oberfläche. Durch die Aufrauhung der Plattengrenzen mit zunehmender Reaktionsdauer nimmt die Zahl der Reaktionskeime kontinuierlich zu, die laterale Ausdehnung der Einzelreaktionen bleibt aber konstant. Bei der Physisorption von Xenon auf Graphit wurde erstmals für die Photoemissionsmikroskopie die resonanten Anregung ausgenutzt. Die verschiedenen Phasen des Adsorbats können dabei deutlich unterschieden werden; bei niedrigen Temperaturen (40K) findet ein gleichmäßiges Wachstum auf der gesamten Oberfläche statt, bei höheren Temperaturen von 60-65K ist dagegen ein Inselwachstum in verschiedenen Phasen zu beobachten. Die zeitliche Entwicklung des Wachstums, die örtliche Lage der Phasen und die Phasenübergänge (gas, fest inkommensurabel, fest kommensurabel) konnten bestimmt werden. Bei der Desorption der Schichten konnten die einzelnen Phasen ebenfalls getrennt werden und das unterschiedliche Desorptionsverhalten sowie die Phasenübergänge selber verifiziert werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Panoramica sullo stato dell’arte degli approcci di sviluppo di mobile app alternativi agli approcci nativi, e approfondimento ulteriore dell’analisi. Valutazione concreta del framework Titanium, il più interessante per architettura e offerta di componenti di UI nativi, realizzata mediante lo sviluppo di un'app e facendo quindi il confronto con lo sviluppo nativo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-adsorption occurs immediately following implantation of biomaterials. It is unknown at which extent protein-adsorption impacts the cellular events at bone-implant interface. To investigate this question, we compared the in-vitro outcome of osteoblastic cells grown onto titanium substrates and glass as control, by modulating the exposure to serum-derived proteins. Substrates consisted of 1) polished titanium disks; 2) polished disks nanotextured with H2SO4/H2O2; 3) glass. In the pre-adsorption phase, substrates were treated for 1h with αMEM alone (M-noFBS) or supplemented with 10%-foetal-bovine-serum (M-FBS). MC3T3-osteoblastic-cells were cultured on the pre-treated substrates for 3h and 24h, in M-noFBS and M-FBS. Subsequently, the culture medium was replaced with M-FBS and cultures maintained for 3 and 7days. Cell-number was evaluated by: Alamar-Blue and MTT assay. Mitotic- and osteogenic-activities were evaluated through fluorescence-optical-microscope by immunolabeling for Ki-67 nuclear-protein and Osteopontin. Cellular morphology was evaluated by SEM-imaging. Data were statistically analyzed using ANOVA-test, (p<0.05). At day3 and day7, the presence or absence of serum-derived proteins during the pre-adsorption phase had not significant effect on cell-number. Only the absence of FBS during 24h of culture significantly affected cell-number (p<0.0001). Titanium surfaces performed better than glass, (p<0.01). The growth rate of cells between day3 and 7 was not affected by the initial absence of FBS. Immunolabeling for Ki-67 and Osteopontin showed that the mitotic- and osteogenic- activity were ongoing at 72h. SEM-analysis revealed that the absence of FBS had no major influence on cell-shape. • Physico-chemical interactions without mediation by proteins are sufficient to sustain the initial phase of culture and guide osteogenic-cells toward differentiation. • The challenge is avoiding adsorption of ‘undesirables’ molecules that negatively impact on the cueing cells receive from surface. This may not be a problem in healthy patients, but may have an important role in medically-compromised-individuals in whom the composition of tissue-fluids is altered.