978 resultados para Time-dependent billiard


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a numerical and theoretical study of intense-field single-electron ionization of helium at 390 nm and 780 nm. Accurate ionization rates (over an intensity range of (0.175-34) X10^14 W/ cm^2 at 390 nm, and (0.275 - 14.4) X 10^14 W /cm^2 at 780 nm) are obtained from full-dimensionality integrations of the time-dependent helium-laser Schroedinger equation. We show that the power law of lowest order perturbation theory, modified with a ponderomotive-shifted ionization potential, is capable of modelling the ionization rates over an intensity range that extends up to two orders of magnitude higher than that applicable to perturbation theory alone. Writing the modified perturbation theory in terms of scaled wavelength and intensity variables, we obtain to first approximation a single ionization law for both the 390 nm and 780 nm cases. To model the data in the high intensity limit as well as in the low, a new function is introduced for the rate. This function has, in part, a resemblance to that derived from tunnelling theory but, importantly, retains the correct frequency-dependence and scaling behaviour derived from the perturbative-like models at lower intensities. Comparison with the predictions of classical ADK tunnelling theory confirms that ADK performs poorly in the frequency and intensity domain treated here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear interaction between two laser beams in a plasma is investigated in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schrodinger equations that are coupled with the slow plasma density response. A nonlinear dispersion relation is derived and used to study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between 2 × 104 and 1.5 × 105 yr. We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as ‘chemical clocks’ which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales, ~10^2.5 yr. We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C(+). The ionization probability of a coherent superposition of the 2s2p(2) (2)D and (2)S states shows rapid modulation due to collective dynamics of the two equivalent 2p electrons, with the modulation frequency linked to the dielectronic repulsion. The best insight into this collective dynamics is achieved by a transformation from LS symmetry to the uncoupled basis. Such dynamics may be important in high-harmonic generation using open-shell atoms and ions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the role of molecular anion chemistry in pseudo-time-dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in Taurus molecular cloud 1 (TMC-1 (CP)). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families C(n)H, C(n)H(2), and HC(n)N. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations compared with model results obtained in the absence of anions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We here analyse the observational SO and CS data presented in Nilsson ct al. (2000). The SO/CS integrated intensity ratio maps are presented for 19 molecular clouds, together with tables of relevant ratios at strategic positions, where we have also observed (SO)-S-34 and/or (CS)-S-34. The SO/CS abundance ratio as calculated from an LTE analysis is highly varying within and between the sources. Our isotopomer observations and Monte Carlo simulations verify that this is not an artifact due to optical depth problems. The variation of the maximum SO/CS abundance ratio between the clouds is 0.2-7. The largest variations within a cloud are found for the most nearby objects, possibly indicating resolution effects. We have also performed time dependent chemical simulations. We compare the simulations with our observed SO/CS abundance ratios and suggest a varying oxygen to carbon initial abundance, differing temporal evolution, density differences and X-ray sources associated with young stellar objects as possible explanations to the variations. In particular, the observed variation of the maximum SO/CS abundance ratio between the clouds can be explained by using initial O/C+ abundance ratios in the range 1.3-2.5. We finally derive a relationship between the SO/CS and O-2/CO abundance ratios, which may be used as a guide to find the most promising interstellar O-2 search targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first results from a time-dependent chemical model to include a gas-phase reaction scheme for producing doubly-deuterated species. Under normal conditions the formation of these species is inefficient. However, when the effects of the freeze out of gas phase species onto grains is included in the chemistry we find that the fractionation of both singly and doubly deuterated species is enhanced. We compare the predictions from our models with recent observations of deuterated molecules in L134N and find that, contrary to previous expectations, we can reproduce the observed levels of fractionation without recourse to an active grain-surface chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)](n) (2) was prepared by reaction of [Au(C6F5)(CH2PPh3)] (1) and [Ag(CF3CO2)] (1:3). The crystal structures of complexes I and 2 were determined by X-ray diffraction, and the latter shows a polymeric 2D arrangement built by Au - Ag, Ag - Ag, and Ag - O contacts. The metallophilic interactions observed in 2 in the solid state seem to be preserved in concentrated THF solutions, as suggested by EXAFS, pulsed-gradient spin-echo NMR, and photophysical studies, which showed that the structural motif [AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)] is maintained under such conditions. Time-dependent DFT calculations agree with the experimental photophysical energies and suggest a metal-to-ligand charge-transfer phosphorescence process. Ab initio calculations give an estimated interaction energy of around 60 kJ mol(-1) for each Au - Ag interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a self consistent polarisable ion tight binding theory for the study of push-pull processes in aromatic molecules. We find that the method quantitatively reproduces ab initio calculations of dipole moments and polarisability. We apply the scheme in a simulation which solves the time dependent Schroedinger equation to follow the relaxation of azulene from the second excited to the ground states. We observe rather spectacular oscillating ring currents which we explain in terms of interference between the HOMO and LUMO states.