999 resultados para Thermoelectric effects
Resumo:
Strips within commercial crops of Stylosanthes guyanensis in the Mareeba district of north Queensland were sprayed with diquat 4, 6 and 10 days before harvest and compared with unsprayed strips. Pre-harvest desiccation made combine harvesting easier, but did not increase harvest yield. Where seed formation and maturation was still possible, desiccation prevented this without substantially increasing the loss of seed to the ground; increased harvest efficiency was thus offset by a diminished quantity of standing seed. However, where there was little or no further potential for seed development, diquat had virtually no effect on the quantity of standing seed or harvest efficiency. It was concluded that the results warranted neither recommendation nor further evaluation of preharvest desiccation of S. guyanensis seed crops.
Resumo:
Stylosanthes humilis swards grown at Brisbane in irrigated boxes were defoliated (about 60 per cent removal of tops) at floral initiation, first flower appearance, or advanced flowering stages ; seed yield was 45, 16, and 14 per cent respectively of seed yield in undefoliated swards. Decreased yields were primarily due to poor seed set of florets, were also associated with reduced inflorescence density and floret number per inflorescence, and occurred despite increases (in some defoliation treatments) in seed size, leaf growth rate, and differentiation of leaves and branches. Total seasonal plant growth was independent of defoliation treatment.
Cultivar-specific effects of pathogen testing on storage root yield of sweetpotato, Ipomoea batatas.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweetpotato, Ipomoea batatas, inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT) clones of 14 sweetpotato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study. Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars. .
Resumo:
Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5 ± 5.6mgCm−2 and 39.2 ± 8.7mgCm−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control 45.2±11.3mgCm−2 per day and 22.0±4.3mgCm−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mgNm−2 per day and 126±36 mg Nm−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of newbacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224 ± 92 mgCm−2) relative to undisturbed sediment (650 ± 254 mgCm−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation werefound in sediments with and without mullet but nitrificationwas reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.
Resumo:
The active site of triosephosphate isomerase (TIM, EC: 5.3.1.1), a dimeric enzyme, lies very close to the subunit interface. Attempts to engineer monomeric enzymes have yielded well-folded proteins with dramatically reduced activity. The role of dimer interface residues in the stability and activity of the Plasmodium falciparum enzyme, PfTIM, has been probed by analysis of mutational effects at residue 74. The PfTIM triple mutant W11F/W168F/Y74W (Y74W*) has been shown to dissociate at low protein concentrations, and exhibits considerably reduced stability in the presence of denaturants, urea and guanidinium chloride. The Y74W* mutant exhibits concentration-dependent activity, with an approximately 22-fold enhancement of kcat over a concentration range of 2.5–40 μm, suggesting that dimerization is obligatory for enzyme activity. The Y74W* mutant shows an approximately 20-fold reduction in activity compared to the control enzyme (PfTIM WT*, W11F/W168F). Careful inspection of the available crystal structures of the enzyme, together with 412 unique protein sequences, revealed the importance of conserved residues in the vicinity of the active site that serve to position the functional K12 residue. The network of key interactions spans the interacting subunits. The Y74W* mutation can perturb orientations of the active site residues, due to steric clashes with proximal aromatic residues in PfTIM. The available crystal structures of the enzyme from Giardia lamblia, which contains a Trp residue at the structurally equivalent position, establishes the need for complementary mutations and maintenance of weak interactions in order to accommodate the bulky side chain and preserve active site integrity.
Resumo:
Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.
Resumo:
In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.
Resumo:
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations (STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP controlled upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which the AP is connected. In such a situation, it is known (see, for example, (3), [9]) that because of packet loss due to finite buffers at the Ap, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno.
Resumo:
The effect of pressure on the electrical resistivity of amorphous n-type (GeSe3.5)100�xBix been studied in a Bridgeman anvil system up to a pressure of 90 kbar down to liquid nitrogen temperature. A continuous amorphous semiconductor to metal-like solid transition in the undoped GeSe3.5 is observed at room temperature. Incorporation of Bi in the GeSe3.5 network is found to significantly disturb the behaviour of the resistivity with pressure. With increasing Bi concentration a much broader variation in resistivity with pressure is observed. The temperature dependence of the resistivity and activation energy at different pressures is also measured and they are found to be composition dependent. Results are discussed in the light of the Phillips Model of ordered clusters in chalcogenide semiconductors.