890 resultados para Terrestrial mammals
Resumo:
Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls. Lead papers of the eleventh symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Australia
Resumo:
Several species of marine mammals are at risk of extinction from being captured as bycatch in commercial fisheries. Various approaches have been developed and implemented to address this bycatch problem, including devices and gear changes, time and area closures and fisheries moratoria. Most of these solutions are difficult to implement effectively, especially for artisanal fisheries in developing countries and remote regions. Re-zoning of the Great Barrier Reef World Heritage Area (GBRWHA) in 2004 closed 33% of the region to extractive activities, including commercial fishing. However, the impact of re-zoning and the associated industry restructuring on a threatened marine mammal, the dugong (Dugong dugon), is difficult to quantify. Accurate information on dugong bycatch in commercial nets is unavailable because of the large geographic extent of the GBRWHA, the remoteness of the region adjacent to the Cape York Peninsula where most dugongs occur and the artisanal nature of the fishery. In the face of this uncertainty, a spatial risk-assessment approach was used to evaluate the re-zoning and associated industry restructuring for their ability to reduce the risk of dugong bycatch from commercial fisheries netting. The new zoning arrangements appreciably reduced the risk of dugong bycatch by reducing the total area where commercial netting is permitted. Netting is currently not permitted in 67% of dugong habitats of high conservation value, a 56% improvement over the former arrangements. Re-zoning and industry restructuring also contributed to a 22% decline in the spatial extent of conducted netting. Spatial risk assessment approaches that evaluate the risk of mobile marine mammals from bycatch are applicable to other situations where there is limited information on the location and intensity of bycatch, including remote regions and developing countries where resources are limited.
Resumo:
Gender assignment for some aquatic mammals in the field is difficult. Molecular sexing from tissue biopsies is possible as males are heterogametic. Here we describe a multiplex PCR assay that amplifies the male specific SRY gene and differentiates ZFX and ZFY gametologues in two sirenian species, dugong (Dugong dugon) and West Indian manatee (Trichechus manatus). The assay was validated with animals of known gender and proved accurate and robust to experimental failure.
Resumo:
Although bats of the genus Pteropus are important ecologically as pollinators and natural hosts for zoonotic pathogens, little is known about their basic physiology. Hematology and plasma biochemistries were determined from wild-caught flying foxes (Pteropus giganteus) in northern India (n = 41). Mean lymphocyte differential count was higher for juveniles than adults. Mean platelet count was lower than previously reported. No hemoparasites were observed. No differences were observed between plasma biochemistry values of male and female bats, juveniles and adults, or lactating and nonlactating females. Variation in aspartate aminotransferase (AST) was seen based on body condition score. Blood urea nitrogen and cholesterol concentrations were lower in P. giganteus than other mammalian groups, but were consistent with those reported from other Pteropus species. Alanine aminotransferase and AST concentrations were higher than those reported for Pteropus vampyrus, a closely related species. This study provides basic physiologic information that can be used in future health and disease studies of Indian flying foxes.
Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids
Resumo:
To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.
Resumo:
Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development - the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 mu mol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.
Resumo:
The Wet Tropics bioregion of north Queensland has been identified as an area of global significance. The world-heritage-listed rainforests have been invaded by feral pigs (Sus scrofa) that are perceived to cause substantial environmental damage. A community perception exists of an annual altitudinal migration of the feral-pig population. The present study describes the movements of 29 feral pigs in relation to altitudinal migration (highland, transitional and lowland areas). Feral pigs were sedentary and stayed within their home range throughout a 4-year study period. No altitudinal migration was detected; pigs moved no more than a mean distance of 1.0 km from the centre of their calculated home ranges. There was no significant difference between the mean (+/- 95% confidence interval) aggregate home ranges for males (8.7 +/- 4.3 km², n = 15) and females (7.2 +/- 1.8 km², n = 14). No difference in home range was detected among the three altitudinal areas: 7.2 +/- 2.4 km² for highland, 6.2 +/- 3.9 km² for transitional and 9.9 +/- 5.3 km² for lowland areas. The aggregate mean home range for all pigs in the present study was 8.0 +/- 2.4 km². The study also assessed the influence seasons had on the home range of eight feral pigs on the rainforest boundary; home ranges did not significantly vary in size between the tropical wet and dry seasons, although the mean home range in the dry season (7.7 +/- 6.9 km²) was more than twice the home range in the wet season (2.9 +/- 0.8 km²). Heavier pigs tended to have larger home ranges. The results of the present study suggest that feral pigs are sedentary throughout the year so broad-scale control techniques need to be applied over sufficient areas to encompass individual home ranges. Control strategies need a coordinated approach if a long-term reduction in the pig population is to be achieved.
Resumo:
Dispersal is a significant determinant of the pattern and process of invasions; however, weed dispersal distances are rarely described and descriptions of dispersal kernels are completely lacking for vertebrate-dispersed weeds. Here, we describe dispersal kernels generated by a native disperser, the endangered southern cassowary (Casuarius casuarius, L.) for an invasive, tropical rainforest plant, pond apple (Annona glabra, L.). Pond apple is primarily water-dispersed and is managed as such. We consider whether cassowary dispersal, as a numerically subordinate dispersal mode, provides an additional dispersal service that may modify the invasion process. In infested areas, pond apple seed was common in cassowary dung. Gut passage had no effect on the probability of single seed germination but deposition in clumps or as whole fruits reduced the probability of germination below that of single seeds. Gut passage times ranged from 65 to 1675 min. Combined with cassowary movement data, this resulted in estimated dispersal distances of 12.5-5212 m, with a median distance of 387 m (quartile range 112-787 m). Native frugivores can be effective dispersers of weeds in rainforest and even terrestrial dispersers can provide long-distance dispersal. Importantly, though pond apple might be expected to be almost entirely dispersed downstream and along the margins of aquatic and marine habitats, cassowaries provide dispersal upstream and between drainages, leading to novel dispersal outcomes. Even through the provision of small quantities of novel dispersal outcomes, subordinate dispersal modes can play a significant role in determining invasion pattern and influence the ultimate success of control programs by providing dispersal to locations unattainable via the primary mode.
Resumo:
Release of virulent myxoma virus has been a key component of rabbit-control operations in Queensland, Australia, since the 1960s but its use rests on anecdotal reports. During a routine operation to release virulent myxoma virus we found no evidence to support the continued regular use of the technique in south-west Queensland. Radio-tagged rabbits inoculated with virulent myxoma virus contracted the disease but failed to pass enough virus to other rabbits to spread the disease. Rabbits with clinical signs of myxomatosis that were shot were infected with field strain derived from the original laboratory strain released in 1950 rather than the virulent strain that has been released annually. There was no change in rabbit survival or abundance caused by the release. Nevertheless, the release of virulent virus may be useful against isolated pockets of rabbits mainly because field strains are less likely to be present. Such pockets are more common now that rabbit haemorrhagic disease virus is established in Queensland.
Resumo:
Since their release over 100 years ago, camels have spread across central Australia and increased in number. Increasingly, they are being seen as a pest, with observed impacts from overgrazing and damage to infrastructure such as fences. Irregular aerial surveys since 1983 and an interview-based survey in 1966 suggest that camels have been increasing at close to their maximum rate. A comparison of three models of population growth fitted to these, albeit limited, data suggests that the Northern Territory population has indeed been growing at an annual exponential rate of r = 0.074, or 8% per year, with little evidence of a density-dependent brake. A stage-structured model using life history data from a central Australian camel population suggests that this rate approximates the theoretical maximum. Elasticity analysis indicates that adult survival is by far the biggest influence on rate of increase and that a 9% reduction in survival from 96% is needed to stop the population growing. In contrast, at least 70% of mature females need to be sterilised to have a similar effect. In a benign environment, a population of large mammals such as camels is expected to grow exponentially until close to carrying capacity. This will frustrate control programs, because an ever-increasing number of animals will need to be removed for zero growth the longer that culling or harvesting effort is delayed. A population projection for 2008 suggests ~10 500 animals need to be harvested across the Northern Territory. Current harvests are well short of this. The ability of commercial harvesting to control camel populations in central Australia will depend on the value of animals, access to animals and the presence of alternative species to harvest when camels are at low density.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.
Resumo:
The spotted gum species complex represents a group of four eucalypt hardwood taxa that have a native range that spans the east coast of Australia, with a morphological cline from Victoria to northern Queensland. Of this group, Corymbia citriodora subsp. variegata (CCV) is widespread in south-eastern Queensland and northern New South Wales. It is currently the most commonly harvested native hardwood in Queensland. However, little basic knowledge of the reproductive biology of the species is available to inform genetic improvement and resource management programmes. Here we take an integrative approach, using both field and molecular data, to identify ecological factors important to mating patterns in native populations of CCV. Field observation of pollinator visitation and flowering phenology of 20 trees showed that foraging behaviour of pollinator guilds varies depending on flowering phenology and canopy structure. A positive effect of tree mean flowering effort was found on insect visitation, while bat visitation was predicted by tree height and by the number of trees simultaneously bearing flowers. Moreover, introduced honeybees were observed frequently, performing 73% of detected flower visits. Conversely, nectar-feeding birds and mammals were observed sporadically with lorikeets and honeyeaters each contributing to 11% of visits. Fruit bats, represented solely by the grey-headed flying fox, performed less than 2% of visits. Genotyping at six microsatellite markers in 301 seeds from 17 families sampled from four of Queensland's native forests showed that CCV displays a mixed-mating system that is mostly outcrossing (tm = 0.899 ± 0.021). Preferential effective pollination from near-neighbours was detected by means of maximum-likelihood paternity analysis with up to 16% of reproduction events resulting from selfing. Forty to 48% of fertilising pollen was also carried from longer distance (>60 m). Marked differences in foraging behaviour and visitation frequency between observed pollinator guilds suggests that the observed dichotomy of effective pollen movement in spotted gums may be due to frequent visit from introduced honeybees favouring geitonogamy and sporadic visits from honeyeaters and fruit bats resulting in potential long-distance pollinations.
Resumo:
Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.
Resumo:
The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%–100%). In addition, we developed a respiration-based fully automated noninvasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research.
Resumo:
The Australian dugong (Dugong dugon) and Florida manatee (Trichechus manatus latirostris) are threatened species of aquatic mammals in the order Sirenia. Sirenian conservation and management actions would benefit from a more complete understanding of genetic diversity and population structure. Generally, species-specific microsatellite markers are employed in conservation genetic studies; however, robust markers can be difficult and costly to isolate. To increase the number of available markers, dugong and manatee microsatellite primers were evaluated for cross-species amplification. Furthermore, one manatee and four dugong novel primers are reported. After polymerase chain reaction optimization, 23 (92%) manatee primers successfully amplified dugong DNA, of which 11 (48%) were polymorphic. Of the 32 dugong primers tested, 27 (84%) yielded product in the manatee, of which 17 (63%) were polymorphic. Dugong and manatee primers were compared and the most informative markers were selected to create robust and informative marker-panels for each species. These cross-species microsatellite marker-panels can be employed to assess other sirenian populations and can provide beneficial information for the protection and management of these unique mammals.