935 resultados para TREATED OBESE MICE
CB1 cannabinoid receptor deficiency promotes cardiac remodeling induced by pressure overload in mice
Resumo:
Background: The endocannabinoid system is known to play a role in regulating myocardial contractility, but the influence of cannabinoid receptor 1 (CB1) deficiency on chronic heart failure (CHF) remains unclear. In this study we attempted to investigate the effect of CB1 deficiency on CHF induced by pressure overload and the possible mechanisms involved. Methods and results: A CHF model was created by transverse aortic constriction (TAC) in both CB1 knockout mice and wild-type mice. CB1 knockout mice showed a marked increase of mortality due to CHF from 4 to 8 weeks after TAC (p = 0.021). Five weeks after TAC, in contrast to wild-type mice, CB1 knockout mice had a higher left ventricular (LV) end-diastolic pressure, lower rate of LV pressure change (± dp/dt max), lower LV contractility index, and a larger heart weight to body weight ratio and lung weight to body weight ratio compared with wild-type mice (all p < 0.05-0.001). Phosphorylation of the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (P38 and ERK) was higher in CB1 knockout mice than that in wild-type mice. In cultured neonatal rat cardiomyocytes, a CB1 agonist reduced cAMP production stimulated by isoproterenol or forskolin, and suppressed phosphorylation of the EGFR, P38, and ERK, while the inhibitory effect of a CB1 agonist on EGFR phosphorylation was abrogated by CB1 knockdown. Conclusion: These findings indicate that cannabinoid receptor 1 inactivation promotes cardiac remodeling by enhancing the activity of the epidermal growth factor receptor and mitogen-activated protein kinases. © 2012 Elsevier Ireland Ltd.
Resumo:
BACKGROUND & AIMS: Few data are available on the potential role of T lymphocytes in experimental acute pancreatitis. The aim of this study was to characterize their role in the inflammatory cascade of acute pancreatitis. METHODS: To type this issue, acute pancreatitis was induced by repeated injections of cerulein in nude mice and in vivo CD4(+) or CD8(+) T cell-depleted mice. The role of T lymphocyte-costimulatory pathways was evaluated using anti-CD40 ligand or anti-B7-1 and -B7-2 monoclonal blocking antibodies. The role of Fas-Fas ligand was explored using Fas ligand-targeted mutant (generalized lymphoproliferative disease) mice. Severity of acute pancreatitis was assessed by serum hydrolase levels and histology. Intrapancreatic interleukin 12, interferon gamma, Fas ligand, and CD40 ligand messenger RNA were detected by reverse-transcription polymerase chain reaction. Intrapancreatic T lymphocytes were identified by immunohistochemistry. RESULTS: In control mice, T cells, most of them CD4(+) T cells, are present in the pancreas and are recruited during acute pancreatitis. In nude mice, histological lesions and serum hydrolase levels are significantly decreased. T-lymphocyte transfer into nude mice partially restores the severity of acute pancreatitis and intrapancreatic interferon gamma, interleukin 12, and Fas ligand gene transcription. The severity of pancreatitis is also reduced by in vivo CD4(+) (but not CD8(+)) T-cell depletion and in Fas ligand-targeted mutant mice. Blocking CD40-CD40 ligand or B7-CD28 costimulatory pathways has no effect on the severity of pancreatitis. CONCLUSIONS: T lymphocytes, particularly CD4(+) T cells, play a pivotal role in the development of tissue injury during acute experimental pancreatitis in mice.
Resumo:
Cryopreservation of ovarian tissue has been proposed for storing gametes of young patients at high risk of premature ovarian failure. Autotransplantation has recently provided some promising results and is still the unique option to restore ovarian function from cryopreserved ovarian tissue in humans. In this article, we analyse data from the combined orthotopic and heterotopic transplantation of cryopreserved ovarian tissue that restored the ovarian function and fertility. Orthotopic transplantation of cryopreserved ovarian tissue at ovarian and peritoneal sites, together with a heterotopic transplantation at the abdominal subcutaneous site, was performed to restore the ovarian function of a 29-year-old woman previously treated with bone marrow transplantation (BMT) for Hodgkin's disease. Ovarian reserve markers progressively suppress within values 5 months after the transplantation (basal FSH 5 mUI/ml and inhibin B 119 ng/ml). Follicular development was observed at all transplantation sites but was predominant at the ovarian site. Six natural cycles were fully documented and analysed. The patient became spontaneously pregnant following the sixth cycle, but unfortunately she later miscarried. Combined orthotopic and heterotopic transplantations succeeded in the restoration of normal spontaneous cycles. Furthermore, this spontaneous pregnancy confirmed the efficiency of this procedure for restoring human fertility.
Resumo:
The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.
Resumo:
A high frequency of Tobacco Mosaic virus (TMV) binding cells was found in spleen cells from unimmunized mice (about 3 to 4%). TMV binding is strongly inhibited by previous incubation with anti immunoglobulin antisera. After stripping of membrane receptors, a full recovery for antigen binding capacity can be observed after 24 hr culture. Experiments are presented to exclude artefactual fluorescent cells: interaction of TMV with some non immunoglobulin membrane components; interaction of fluorescent anti TMV antibody with the Fc receptor of B cells; the binding of TMV to cytophilic immunoglobulins. The occurrence of lymphocytes able to bind several non crossreactive antigens is suggested by three lines of evidence: the high number of antigen binding cells in unimmunized mice, presence of surface immunoglobulins on some TMV binding cells after complete capping of TMV receptors and the direct demonstration of lymphocytes binding TMV and hemocyanin at different membrane sites.
Resumo:
The normal immune response of A/J mice against arsonate coupled to hemocyanin is characterized by a major recurrent cross-reactive Id, the CRIA. This Id is encoded by a single gene segment combination: VHidcr11-DFL16.1e-JH2 for the H chain and Vkidcr-Jk1 for the L chain. In this report, we show that lethal irradiation of A/J mice followed by reconstitution with autologous or syngeneic lymphoid cells results in loss of major CRIA Id expression in the response to arsonate. Different protocols were performed to repopulate the irradiated mice. First, lethally irradiated A/J mice were reconstituted by the transfer of syngeneic bone marrow cells. Second, A/J mice were lethally irradiated while their hind limbs were partially shielded. Third, lethally irradiated A/J mice received a transfer of syngeneic spleen cells. The three groups of mice produce high titers of antiarsonate antibodies completely devoid of CRIA DH-JH related idiotopes expression. Moreover, a lack of affinity maturation is observed in the secondary antiarsonate response of all irradiated and reconstituted mice. A transfer of syngeneic peritoneal cells or a transfer of primed T cells in irradiated and reconstituted A/J mice do not restore in a significant manner either the recurrent CRIA expression or the affinity maturation of the antiarsonate response. Our data suggest that the choice of this Id is not solely dictated by the Igh locus.
Resumo:
In advanced non-small cell lung cancer (NSCLC) platinum based chemotherapy with second generation drugs improves median survival (MS) to 8 months and 29% and 10% at 1 and 2 years. Platinum with a third generation drug can improve survival further (BMJ 1995;311: 899) (Spiro et al. Thorax 2004;59:828 Big Lung Trial; N Engl J Med 2003;346:92 ECOG study). NICE now recommends chemotherapy with platinum and a third generation drug for inoperable NSCLC as the first treatment modality. Methods: We audited survival of 176/461 consecutive patients referred for at least 3 courses of platinum and either gemcitabine or vinorelbine from July 2001 to December 2005. Minimal follow up 17 months. Chemotherapy was given on site. Radical radiotherapy for stage IIIA, palliative radiotherapy and second line drugs were given as felt appropriate. Results: 64% were male. 30 (17%) were <55 years ; 66 (37.5%) age 55–65 years; 63 (35.8%) aged 66–75 and 16 (9.1%) >75 years. 5 (2.8%) were stage II; 46 (26%) stage IIIA; 68 (38%) stage IIIB and 55 (30.8%) stage IV. 68 (38%) had 0– 2 courses; 63 (36%) 3 courses and 44 (25%) had 4 or more.
Resumo:
The liver preferentially secretes alpha-tocopherol into plasma under the control of the hepatic alpha-tocopherol transfer protein (alpha-TTP). alpha-TTP-null mice (Ttpa(-/-) mice) are vitamin E deficient, therefore were used for investigations of in vivo responses to sub-normal tissue alpha-tocopherol concentrations during inflammation. Increased basal oxidative stress in Ttpa(-/-) mice was documented by increased plasma lipid peroxidation, and superoxide production by bone marrow-derived neutrophils stimulated in vitro with phorbol 12-myristate 13-acetate. Lipopolysaccharide (LPS) injected intraperitoneally induced increases in lung and liver HO-1 and iNOS, as well as plasma NO(x) in Ttpa(+/+) mice. LPS induced more modest increases in these markers in Ttpa(-/-) mice, while more marked increases in plasma IL-10 and lung lavage TNF alpha were observed. Taken together, these results demonstrate that alpha-tocopherol is important for proper modulation of inflammatory responses and that sub-optimal alpha-tocopherol concentrations may derange inflammatory-immune responses.