925 resultados para Surgical technique and possible pitfalls
Resumo:
The mean-lifetimes, τ, of various medium-spin excited states in Pd103 and Cd106,107 have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In Cd106, the mean-lifetimes of the Iπ=12+ state at Ex=5418 keV and the Iπ=11- state at Ex=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated β2 deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The β2 deformation of 0.14(1) for the Iπ=12+ state in Cd106 compares with a predicted β2 value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast Iπ=152- states in Pd103 (at Ex=1262 keV) and Cd107 (at Ex=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to β2 values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for Pd103 but deviate for that predicted for Cd107. © 2007 The American Physical Society.
Resumo:
In this paper the radial free jet which is produced by a continuous discharge of fluid from the space between two identical, parallel, circular, concentric discs into an infinite region of stagnant fluid of the same density and viscosity is investigated. Both laminar and turbulent jets are considered with analytical solutions being obtained near to the origin of the jet and at large distances along the jet. These asymptotic solutions are matched using a computational technique, and the numerical predictions show very good agreement with all the available experimental data.
Resumo:
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.
Resumo:
Redescription of Balantidium ctenopharyngodoni "Chen (Acta Hydrobiol Sin 1:123-164, 1955)", collected from the hindgut of grass carp (Ctenopharyngodon idella), especially the segment of 6-10 cm upstream from the anus, from Honghu Lake, Hubei Province, central China in November 2005, is presented in this paper to complete Chen's description at both light and scanning electron microscopic levels. Some revisions were done: the vestibulum is fairly symmetrical, with compactly arranged cilia rather than assembled membrane bordering on the left vestibular side; four contractile vacuoles actually exist in the latter body, three of which surround the posterior portion of the macronucleus, whereas the fourth lies antero-left to it. Somatic monokinetids were compared among the species of genus Balantidium. The cysts were described, and possible infection routes of B. ctenopharyngodoni were also discussed.
Resumo:
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m(-2), and lake water ( containing ca. 190 g m(-2) of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21-56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the ( bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.
Resumo:
ZnO thin films were deposited on glass substrates at room temperature (RT) similar to 500 degrees C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 degrees C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments: the grain size increased and stress relaxed for the films deposited at 200-500 degrees C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that E-g of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 degrees C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.
Resumo:
We study the theory of temperature-dependent electron transport, spin polarization, and spin accumulation in a Rashba spin-orbit interaction (RSOI) quantum wire connected nonadiabatically to two normal conductor electrode leads. The influence of both the wire-lead connection and the RSOI on the electron transport is treated analytically by means of a scattering matrix technique and by using an effective free-electron approximation. Through analytical analysis and numerical examples, we demonstrate a simple way to design a sensitive spin-transfer switch that operates without applying any external magnetic fields or attaching ferromagnetic contacts. We also demonstrate that the antisymmetry of the spin accumulation can be destroyed slightly by the coupling between the leads and the wire. Moreover, temperature can weaken the polarization and smear out the oscillations in the spin accumulation.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
The simple reflection technique is usually used to measure the linear electro-optic (EO) coefficient (Pockels coefficient) in the development of EO polymer thin films. But there are some problems in some articles in the determination of the phase shift between the s and p light modes of a laser beam waveguided into the polymer film while a modulating voltage is applied across the electrodes, and different expressions for the linear EO coefficient measured have been given in these articles. In our research, more accurate expression of the linear EO coefficient was deduced by suitable considering the phase shift between the s and p light modes. The linear EO coefficients of several polymer thin films were measured by reflection technique, and the results of the Linear EO coefficient calculated by different expressions were compared. The limit of the simple reflection technique for measuring the linear EO coefficient of the polymer thin films was discussed.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
Highly active PtSn/C catalyst was prepared by a polyol method. The catalyst was reduced in H-2/Ar atmosphere at 600 degreesC for 2 h in order to obtain different metallic phase. TEM images show uniform dispersion of spherical metal nanoparticles with average diameters of 1.8 and 3.9 nm for the as-prepared and treated catalysts, respectively. UV-vis spectrophotometry is employed to monitor the preparation process and the results indicate that Pt-Sn complex formed once the precursors of Pt and Sn were mixed together. The structure properties of the samples were characterized using X-ray diffraction. The results show that after reduction, the catalyst tends to form PtSn alloy. TPR experiment results show that Sn exists in multivalent state in the as-prepared sample while only zero-valence Sn was detected in the treated sample, while it could not be excluded that the multivalent tin existed in the treated sample. Cyclic voltammetry (CV) technique and single direct ethanol fuel cell (DEFC) tests indicate that the as-prepared catalyst possesses superior catalytic activity for ethanol oxidation to the treated sample. The results suggest that Pt and multivalent Sn are the active species for ethanol oxidation. (C) 2004 Elsevier B.V. All rights reserved.