991 resultados para Suppressor genes
Resumo:
In this study we describe a novel interaction between the breast/ovarian tumor suppressor gene BRCA1 and the transcription factor GATA3, an interaction, which is important for normal breast differentiation. We show that the BRCA1-GATA3 interaction is important for the repression of genes associated with triple-negative and basal-like breast cancer (BLBCs) including FOXC1, and that GATA3 interacts with a C-terminal region of BRCA1. We demonstrate that FOXC1 is an essential survival factor maintaining the proliferation of BLBCs cell lines. We define the mechanistic basis of this corepression and identify the GATA3-binding site within the FOXC1 distal promoter region. We show that BRCA1 and GATA3 interact on the FOXC1 promoter and that BRCA1 requires GATA3 for recruitment to this region. This interaction requires fully functional BRCA1 as a mutant BRCA1 protein is unable to localize to the FOXC1 promoter or repress FOXC1 expression. We demonstrate that this BRCA1-GATA3 repression complex is not a FOXC1-specific phenomenon as a number of other genes associated with BLBCs such as FOXC2, CXCL1 and p-cadherin were also repressed in a similar manner. Finally, we demonstrate the importance of our findings by showing that loss of GATA3 expression or aberrant FOXC1 expression contributes to the drug resistance and epithelial-to-mesenchymal transition-like phenotypes associated with aggressive BLBCs. Oncogene (2012) 31, 3667-3678; doi:10.1038/onc.2011.531; published online 28 November 2011
Resumo:
The PLZF/RARA fusion protein generated by the t(11;17)(q23;q21) translocation in acute promyelocytic leukaemia (APL) is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear. We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.
Resumo:
The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Four extradiol dioxygenase genes which encode enzymes active against catechol and substituted catechols were cloned from two different Rhodococcus strains, and their nucleotide sequences were determined. A catechol 2,3-dioxygenase gene (edoC) was shown to be identical to the previously described ipbC gene from the isopropylbenzene operon of Rhodococcus erythropolis. Amino acid sequences deduced from the three other genes (edoA, edoB and edoD) were shown to have various degrees of homology to different extradiol dioxygenases, The EdoA and EdoB dioxygenases were classified as belonging to the third family of type I oxygenases and represented two new subfamilies, whereas the EdoD dioxygenase was a type II enzyme. Analysis of six Rhodococcus strains revealed a wide distribution of the above dioxygenase genes. Rhodococcus sp. I1 was shown to harbour all four of the analysed dioxygenase genes. Nucleotide sequences homologous to the edoB gene were present in all of the strains, including R. erythropolis NCIMB 13065, which did not utilize any of the aromatic compounds analysed. The latter finding points to the existence of a silent pathway(s) for degradation of aromatic compounds in this Rhodococcus strain.
Resumo:
Marine sponges have never been directly examined with respect to the presence of viruses or their potential involvement in horizontal gene transfer. Here we demonstrate for the first time, the presence of viruses in the marine sponge Hymeniacidon perlevis. Moreover, bacterial 16s rDNA was detected in DNA isolated from these viruses, indicating that phage-derived transduction appears to occur in H. perlevis. Phylogenetic analysis revealed that bacterial 16s rDNA isolated from sponge-derived viral and total DNA differed significantly, indicating that not all species are equally involved in transduction.
Resumo:
Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex.
Resumo:
One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l-Ara4N synthesis and transfer to the LPS. The absence of l-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.