970 resultados para Subunit
Resumo:
VhhP2 is an Outer membrane protein identified in a pathogenic Vibrio harveyi strain, T4, isolated from diseased fish. When used as a Subunit Vaccine, purified recombinant VhhP2 affords high level of protection upon Japanese flounder against V harveyi challenge. Vaccination with VhhP2 induced the expression of a number of immune-related genes, especially those encoding immunoglobulin M (IgM) and major histocompatibility complex (MHC) II alpha. A VhhP2 surface display system, in the form of the fish commensal strain FIR harboring the vhhP2-expressing plasmid pJVP, was constructed. PF3/pJVP is able to produce and present recombinant VhhP2 on cell surface. Vaccination of fish with live PF3/pJVP via intraperitoneal injection elicited Strong immunoprotection. Vaccination of fish orally with live PF3/pJVP embedded in alginate microspheres also induced effective immunoprotection. In addition, a VhhP2-based surface display system was created, in which VhhP2 serves as a carrier for the Surface delivery of a heterologous Edwardsiella tarda immunogen, Et18, that is fused in-frame to VhhP2. DH5 alpha/pJVP18, which expresses and surface-displays the VhhP2-Et18 chimera, proved to be an effective vaccine that call protect fish against infections by V. harveyi and E. tarda to the extents comparable to those produced by vaccination with purified recombinant VhhP2 and Et18, respectively. These data suggest that VhhP2 may be applied as a vaccine and a vaccine carrier against infections by V. harveyi and other pathogens such as F. tarda. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
APC (allophycocyanin) is widely used for fluorescence tagging and may be a promising antioxidant agent for use within the food and pharmaceutical industries. Chromophore attachment to apo-ApcA (apo-APC alpha-subunit without chromophore) can be auto-catalysed both in vitro and in vivo. In the present study, a plasmid containing genes of apo-ApcA and chromophore synthetases (HOI (ferredoxin-dependent haem oxygenase) and PcyA (phycocyanobilin:ferredoxin oxidoreductase)] was constructed and expressed in Escherichia coli. The results show that holo-ApcA (APC alpha-subunit with chromophore) can be synthesized by autocatalysis in E. coli. Recombinant holo-ApcA showed the same spectral and fluorescent properties as PC (phycocyanin) and could serve as a good substitute for native PC for fluorescent tagging. Moreover, recombinant ApcA can inhibit hydroxyl and peroxyl radicals more strongly than holo-ApcA and native APC. The EC50 values were 296.4 +/- 22.4 mu g/ml against hydroxyl radicals and 38.5 +/- 2.6 mu g/ml against peroxyl radicals.
Resumo:
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker potypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.
Resumo:
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The geneswere cloned for the two apoprotein subunits, alpha and beta, of phycocyanin from the cyanobacterium Spirulina maxima (=Arthrospira maxima) strain F3. The alpha- and beta-subunit gene-coding regions contain 489 bp and 519 bp, respectively. The beta-subunit gene is upstream from the alpha-subunit gene, with a 111-bp segment separating them. Similarities between the alpha-subunits of S. maxima and nine other cyanobacteria were between 58% and 99%, as were those between the beta-subunits. The maximum similarity between the alpha- and beta-subunits from S. maxima was 27%.
Resumo:
The mouse tumor cell 5180 and human liver carcinoma cell SMC 7721 cells were first treated with R-PE and its subunits (alpha, beta, gamma subunits), then irradiated with Argon laser (496 nm, 28.8 J/cm(2)). Survival rate was measured by MTT method. In order to compare the phototoxicity in normal cells, the mouse marrow cells were treated with photofrin II and beta-subunit, irradiated with 45 J/cm(2) of light; survival rate was also measured by MTT method. The result showed that R-PE subunits had better PDT effect on s180 cells than R-PE and lower phototoxicity in marrow cells than photofrin II Flow cytometric analysis showed that PDT results in a growth inhibition and a G(0)-G(1) cell cycle arrest in SMC 7721 cells. The tumor cells inhibited by PDT in vivo were morphologically observed by TEM, the tumor cell death was daze to the occlusion of tumor blood vessels and inducement of cell programmed death in nuclei. Therefore, with the advantage in special fluorescence activity, loth molecular weight, good light absorbent character and weak phototoxicity, R-PE subunit is art attractive option for improving the selectivity of PDT.
Resumo:
Polysiphonia urceolata R-phycoerythrin and Porphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native gamma subunits were isolated from the reaction mixture. The process of degradation of phycoerythrin with proteinaseK showed that the gamma subunit is located in the central cavity of (alpha beta)(6) hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated gamma subunit showed that the absorption peaks of phycoerythrobilins on alpha or beta subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated gamma subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated gamma subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.
Resumo:
A Gymnodinium-like species was studied with light microscopy (LM) and scanning electron microscopy (SEM). Also, the internal transcribed spacers (containing 5.8S rDNA) and large ribosomal subunit DNA (D1-D2) sequences were obtained by PCR amplification, and then sequenced to explore the relationships within our isolate, Gymnodinium and other Gymnodinium-like species, including Karenia, Gyrodinium, Karlodinium and Symbiodinium. The LM observation showed that the species was characterized by moving in a levorotatory direction, visible hypocone, epicone and transverse groove, all of which are typical for Gymnodinium. In addition, two flagella could be found under SEM. The phylogenetic analysis revealed that the isolate grouped with Symbiodium, rather than other relevant dinoflagellates. All results showed our isolate belongs to Symbiodium. The strain was isolated from a red tide water sample, denoting that Symbiodium may be causative species for algal bloom.
Resumo:
The free living conchocelis of Porphyra yezoensis Ueda was treated with N-methyl-N-nitro-N-nitrosoguanidine to induce pigmentation mutants. The artificial green pigmentation mutant of P. yezoensis conchocelis, which was composed entirely of green cells, was isolated through visualization with the unaided eye. The acquired green conchocelis was further developed into a green gametophytic blade. This mutant was relatively stable in color in both gametophytic blade and conchocelis phases. The gametophytic blade mutant was successively cultivated for commerce at some Porphyra farms in Rudong, China, and few wild type or sectorially variegated gametophytic blade occurred, indicating that the green mutant has commercial value. The green mutant was characterized as having lower phycoerythrin and higher phycocyanin content, and SDS-PAGE suggested that phycoerythrin was missing the gamma-subunit in comparison to the wild type. The wild type and the green mutant showed a clear difference in 02 evolution rates in white, green, yellow, and red light, which might be due to the qualitative and quantitative changes of phycoerythrin, and the quantitative difference of phycocyanin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Allophycocyanin ( APC) is a phycobiliprotein with various biological and pharmacological properties. An expression vector containing five essential genes in charge of biosynthesis of cyanobacterial APC holo-alpha subunit ( holo- ApcA) was constructed, resulting in over- expression of a fluorescent holo- ApcA in E. coli. After being cultured for 16 h, the dry cell density reached 22.5 gl(-1), and the expression of holo- HT- ApcA was up to 1 gl(-1) broth. The recombinant protein showed similar spectral features to native APC.
Resumo:
CD83 is a transmembrane glycoprotein of the immunoglobulin (Ig) superfamily and a surface marker for fully matured dendritic cells (DCs) in humans and mice. In teleosts, DC-like cells and their molecular markers are largely unknown. In this report, we described the identification and expressional analysis of a CD83 homologue, SmCD83, from turbot Scophthalmus maximus. The open reading frame of SmCD83 is 639 bp, which is preceded by a S'-untranslated region (UTR) of 87 bp and followed by a 3'-UTR of 1111 bp. The SmCD83 gene is 4716 bp in length, which contains five exons and four introns. The deduced amino acid sequence of SmCD83 shares 40-50% overall identities with the CD83 of several fish species. Like typical CD83, SmCD83 possesses an Ig-like extracellular domain, a transmembrane domain, and a cytoplasmic domain. The conserved disulfide bond-forming cysteine residues and the N-linked glycosylation sites that are preserved in CD83 are also found in SmCD83. Expressional analysis showed that constitutive expression of SmCD83 was high in gill, blood, spleen, muscle, and kidney and low in heart and liver. Bacterial infection and poly(I:C) treatment enhanced SmCD83 expression in kidney in time-dependent manners. Likewise, bacterial challenge caused significant induction of SmCD83 expression in cultured macrophages. Vaccination of turbot with a bacterin and a purified recombinant subunit vaccine-induced significant SmCD83 expression during the first week following vaccination. These results demonstrate that SmCD83 expression correlates with microbial challenge and antigen stimulation, which suggests the possibility that there may exist in turbot DC-like antigen-presenting cells that express SmCD83 upon activation by antigen uptake. In addition, these results also suggest that SmCD83 may serve as a marker for activated macrophages in turbot. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hsp70 proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In this study, an Hsp70 homologue (SoHsp70) was identified from red drum Sciaenops ocellatus and analyzed at molecular level. The open reading frame of SoHsp70 is 1920 bp and intronless, with a 5'-untranslated region (UTR) of 399 bp and a 3'-UTR of 241 bp. The deduced amino acid sequence of SoHsp70 shares 84-92% overall identities with the Hsp70s of a number of fish species. In silico analysis identified in SoHsp70 three conserved Hsp70 domains involved in nucleotide and substrate binding. The coding sequence of SoHsp70 was subcloned into Escherichia coli, from which recombinant SoHsp70 was purified and, upon ATPase assay, found to exhibit apparent ATPase activity. Expressional analysis showed that constitutive expression of SoHsp70 was detectable in heart, liver, spleen, kidney, brain, blood, and gill. Experimental challenges with poly(I:C) and bacterial pathogens of Gram-positive and Gram-negative nature induced SoHsp70 expression in kidney to different levels. Stress-responsive analysis of SoHsp70 expression in primary cultures of red drum hepatocytes showed that acute heat shock treatment elicited a rapid induction of SoHsp70 expression which appeared after 10 min and 30 min of treatment. Exposure of hepatocytes separately to iron, copper, mercury, and hydrogen peroxide significantly unregulated SoHsp70 expression in time-dependent manners. Vaccination of red drum with a Streptococcus iniae bacterin was also found to induce SoHsp70 expression. Furthermore, recombinant SoHsp70 enhanced the immunoprotective effect of a subunit vaccine. Taken together, these results suggest that SoHsp70 is a stress-inducible protein that is likely to play a role in immunity and in coping with environmental and biological stresses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class II alpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
R-phycoerythrin was isolated and purified from a red alga, Polysiphonia urceolata Grev, using Streamline column combined with ion-exchange chromatography or hydroxyapatite chromatography. The purity of R-phycoerythrin isolated by Streamline column was up to 1.66 and the yield of R-phycoerythrin could be as high as 0.68 mg/g frozen P. urceolata. All the eluates from Streamline column were divided into two equivalent parts, respectively. One part was pumped into the ion-exchange column loaded with Q-Sepharose and the other was applied to the adsorption column loaded with hydroxyapatite. The purities of R-phycoerythrin purified using these two methods were both up to 3.26, more than 3.2 the commonly accepted criterion. The yield of purified R-phycoerythrin from the ion-exchange chromatography was 0.40 mg/g frozen P. urceolata and that from the hydroxyapatite chromatography could reach 0.34 mg/g frozen P. urceolata. The purified protein had three absorption peaks at 498, 535, and 565 nm and displayed a fluorescence maximum at 580 nm, which was consistent with the typical spectrum of R-phycoerythrin. The purified R-PE was also identified with electrophoresis. Only one single protein band appeared on native-PAGE with silver staining. SDS-PAGE demonstrated the presence of one 20 kDa major subunit, and one low intensity band corresponding to 33 kDa subunit. The results indicate that using the expanded bed adsorption combined with ion-exchange chromatography or hydroxyapatite chromatography, R-phycoerythrin can be purified from frozen P. urceolata on large scale. (c) 2006 Elsevier Inc. All rights reserved.