893 resultados para Stochastic volatility
Resumo:
We examine how the most prevalent stochastic properties of key financial time series have been affected during the recent financial crises. In particular we focus on changes associated with the remarkable economic events of the last two decades in the volatility dynamics, including the underlying volatility persistence and volatility spillover structure. Using daily data from several key stock market indices, the results of our bivariate GARCH models show the existence of time varying correlations as well as time varying shock and volatility spillovers between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent financial crisis. Our theoretical considerations on the time varying model which provides the platform upon which we integrate our multifaceted empirical approaches are also of independent interest. In particular, we provide the general solution for time varying asymmetric GARCH specifications, which is a long standing research topic. This enables us to characterize these models by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional moments, and third, their covariance structure.
Resumo:
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Resumo:
Theoretical developments on pinning control of complex dynamical networks have mainly focused on the deterministic versions of the model dynamics. However, the dynamical behavior of most real networks is often affected by stochastic noise components. In this paper the pinning control of a stochastic version of the coupled map lattice network with spatiotemporal characteristics is studied. The control of these complex dynamical networks have functional uncertainty which should be considered when calculating stabilizing control signals. Two feedback control methods are considered: the conventional feedback control and modified stochastic feedback control. It is shown that the typically-used conventional control method suffers from the ignorance of model uncertainty leading to a reduction and potentially a collapse in the control efficiency. Numerical verification of the main result is provided for a chaotic coupled map lattice network. © 2011 IEEE.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.
Resumo:
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo
Resumo:
This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.
Resumo:
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.
Resumo:
AMS subject classification: 90C31, 90A09, 49K15, 49L20.
Resumo:
2002 Mathematics Subject Classification: 65C05
Detecting Precipitation Climate Changes: An Approach Based on a Stochastic Daily Precipitation Model
Resumo:
2002 Mathematics Subject Classification: 62M10.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.
Resumo:
2000 Mathematics Subject Classification: 62J05, 62G35
Resumo:
2000 Mathematics Subject Classification: 60H15, 60H40