953 resultados para Statistical inference
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Public Attitudes Towards Sex Offenders in Northern Ireland, Research and Statistical Bulletin 6/2007
Resumo:
This paper presents an analysis of entropy-based molecular descriptors. Specifically, we use real chemical structures, as well as synthetic isomeric structures, and investigate properties of and among descriptors with respect to the used data set by a statistical analysis. Our numerical results provide evidence that synthetic chemical structures are notably different to real chemical structures and, hence, should not be used to investigate molecular descriptors. Instead, an analysis based on real chemical structures is favorable. Further, we find strong hints that molecular descriptors can be partitioned into distinct classes capturing complementary information.
Resumo:
Background: The availability of large-scale high-throughput data possesses considerable challenges toward their functional analysis. For this reason gene network inference methods gained considerable interest. However, our current knowledge, especially about the influence of the structure of a gene network on its inference, is limited.