994 resultados para Spin-orbit coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthorhombic single crystals of TbMn0.5Fe0.5O3 are found to exhibit spin-reorientation, magnetization reversal, and weak ferromagnetism. Strong anisotropy effects are evident in the temperature dependent magnetization measurements along the three crystallographic axes a, b, and c. A broad magnetic transition is visible at T-N(Fe/Mn) = 286K due to paramagnetic to A(x)G(y)C(z) ordering. A sharp transition is observed at T-SR(Fe/Mn) = 28 K, which is pronounced along c axis in the form of a sharp jump in magnetization where the spins reorient to G(x)A(y)F(z) configuration. The negative magnetization observed below T-SR(Fe/Mn) along c axis is explained in terms of domain wall pinning. A component of weak ferromagnetism is observed in field-scans along c-axis but below 28 K. Field-induced steps-like transitions are observed in hysteresis measurement along b axis below 28 K. It is noted that no sign of Tb-order is discernible down to 2K. TbMn0.5Fe0.5O3 could be highlighted as a potential candidate to evaluate its magneto-dielectric effects across the magnetic transitions. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent approach for the construction of constant dimension subspace codes, designed for error correction in random networks, is to consider the codes as orbits of suitable subgroups of the general linear group. In particular, a cyclic orbit code is the orbit of a cyclic subgroup. Hence a possible method to construct large cyclic orbit codes with a given minimum subspace distance is to select a subspace such that the orbit of the Singer subgroup satisfies the distance constraint. In this paper we propose a method where some basic properties of difference sets are employed to select such a subspace, thereby providing a systematic way of constructing cyclic orbit codes with specified parameters. We also present an explicit example of such a construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual behavior of reentrant spin-glass (RSG) compound Lu2MnNiO6 has been investigated by magnetometry and neutron diffraction. The system possesses a ferromagnetic (FM) ordering below 40 K and undergoes a RSG transition at 20 K. Additionally, Lu2MnNiO6 retains memory effect above the glassy transition till spins sustain ordering. A novel critical behavior with unusual critical exponents (beta =similar to 0.241 and gamma similar to 1.142) is observed that indicates a canting in the spin structure below the ferromagnetic transition (T-C). A comprehensive analysis of temperature-dependent neutron diffraction data and first-principles calculations divulge that a structural distortion induced by an octahedral tilting results in a canted spin structure below T-C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyl terminated azide binders can undergo a spurious reaction with diisocyanates to form tetrazoline-5-one via an inter molecular 1,3-dipolar cycloaddition reaction apart from urethane/allophanate groups which has been overlooked. This has serious implications on solid propellants. The computed activation barrier using density functional theory (DFT) for urethane formation reaction is 28.4 kJ mol(-1) and that for tetrazoline-5-one formation reaction is 108.0 kJ mol(-1). DFT studies reveal that the rate limiting step of the reaction is 1,3-dipolar cycloaddition between azide and isocyanate. A dual cure was observed in the temperature ranges 42-77 degrees C and 78-146 degrees C by differential scanning calorimetry (DSC) and rheological studies, confirming multiple reactions. Tetrazoline-5-one formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance spectroscopy (NMR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF similar to (1/4,1/4,1/4 +/- delta).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the canted magnetic state in Sr2IrO4 using fully relativistic density functional theory (DFT) including an on-site Hubbard U correction. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation. Moreover, we put forward a scheme to study the anisotropic magnetic couplings by mapping magnetically constrained noncollinear DFT onto a general spin Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin, and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the structural distortions and the competition between isotropic exchange and DM interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with processing the EEG signals obtained from 16 spatially arranged electrodes to measure coupling or synchrony between the frontal, parietal, occipital and temporal lobes of the cerebrum under the eyes open and eyes closed conditions. This synchrony was measured using magnitude squared coherence, Short Time Fourier Transform and wavelet based coherences. We found a pattern in the time-frequency coherence as we moved from the nasion to the inion of the subject's head. The coherence pattern obtained from the wavelet approach was found to be far more capable of picking up peaks in coherence with respect to frequency when compared to the regular Fourier based coherence. We detected high synchrony between frontal polar electrodes that is missing in coherence plots between other electrode pairs. The study has potential applications in healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present estimates of single spin asymmetry (SSA) in the electroproduction of taking into account the transverse momentum dependent (TMD) evolution of the gluon Sivers function and using Color Evaporation Model of charmonium production. We estimate SSA for JLab, HERMES, COMPASS and eRHIC energies using recent parameters for the quark Sivers functions which are fitted using an evolution kernel in which the perturbative part is resummed up to next-to-leading logarithms accuracy. We find that these SSAs are much smaller as compared to our first estimates obtained using DGLAP evolution but are comparable to our estimates obtained using TMD evolution where we had used approximate analytical solution of the TMD evolution equation for the purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard procedure of groundwater resource estimation in India till date is based on the specific yield parameters of each rock type (lithology) derived through pumping test analysis. Using the change in groundwater level, specific yield, and area of influence, groundwater storage change could be estimated. However, terrain conditions in the form of geomorphological variations have an important bearing on the net groundwater recharge. In this study, an attempt was made to use both lithology and geomorphology as input variables to estimate the recharge from different sources in each lithology unit influenced by the geomorphic conditions (lith-geom), season wise separately. The study provided a methodological approach for an evaluation of groundwater in a semi-arid hard rock terrain in Tirunelveli, Tamil Nadu, India. While characterizing the gneissic rock, it was found that the geomorphologic variations in the gneissic rock due to weathering and deposition behaved differently with respect to aquifer recharge. The three different geomorphic units identified in gneissic rock (pediplain shallow weathered (PPS), pediplain moderate weathered (PPM), and buried pediplain moderate (BPM)) showed a significant variation in recharge conditions among themselves. It was found from the study that Peninsular gneiss gives a net recharge value of 0.13 m/year/unit area when considered as a single unit w.r.t. lithology, whereas the same area considered with lith-geom classes gives recharge values between 0.1 and 0.41 m/year presenting a different assessment. It is also found from this study that the stage of development (SOD) for each lith-geom unit in Peninsular gneiss varies from 168 to 230 %, whereas the SOD is 223 % for the lithology as a single unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we derive an approach for the effective utilization of thermodynamic data in phase-field simulations. While the most widely used methodology for multi-component alloys is following the work by Eiken et al. (2006), wherein, an extrapolative scheme is utilized in conjunction with the TQ interface for deriving the driving force for phase transformation, a corresponding simplistic method based on the formulation of a parabolic free-energy model incorporating all the thermodynamics has been laid out for binary alloys in the work by Folch and Plapp (2005). In the following, we extend this latter approach for multi-component alloys in the framework of the grand-potential formalism. The coupling is applied for the case of the binary eutectic solidification in the Cr-Ni alloy and two-phase solidification in the ternary eutectic alloy (Al-Cr-Ni). A thermodynamic justification entails the basis of the formulation and places it in context of the bigger picture of Integrated Computational Materials Engineering. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated using cost effective sol-gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 degrees C, retaining its structural integrity up to 1000 degrees C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance-voltage (C-V) characteristics of the films annealed at 400 degrees C exhibited a high value of dielectric constant (similar to 34). Further, frequency dependent C-V measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent `s'=0.85). A low leakage current density of 3.6 x 10(-7) A/cm(2) at 1 V was observed for the films annealed at 600 degrees C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-kappa materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and AID. The results also suggest that the high value of dielectric constant kappa obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.