Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instability and spin fluctuations
Data(s) |
2015
|
---|---|
Resumo |
We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF similar to (1/4,1/4,1/4 +/- delta). |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/52025/1/Phy_Rev_B_92-3_035127_2015.pdf Dhaka, RS and Das, Tanmoy and Plumb, NC and Ristic, Z and Kong, W and Matt, CE and Xu, N and Dolui, Kapildeb and Razzoli, E and Medarde, M and Patthey, L and Shi, M and Radovic, M and Mesot, Joel (2015) Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instability and spin fluctuations. In: PHYSICAL REVIEW B, 92 (3). |
Publicador |
AMER PHYSICAL SOC |
Relação |
http://dx.doi.org/10.1103/PhysRevB.92.035127 http://eprints.iisc.ernet.in/52025/ |
Palavras-Chave | #Physics |
Tipo |
Journal Article PeerReviewed |