976 resultados para South American fishes
Resumo:
Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K-V) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K-V channels and 4 Na-V channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K-V 1.1, K-V 1.2, and K-V 1.3 channels with an IC50 of similar to 300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K-V channels. The ability of crotamine to inhibit the potassium current through K-V channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K-V channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.
Resumo:
Recently, molecular analysis caused the South American Viguiera Kunth species to be transferred to Aldama La Llave. However, the circumscription has not been established for certain of the South American species, including Aldama filifolia (Sch. Bip. ex Baker) E. E. Schill. & Panero, A. linearifolia (Chodat) E. E. Schill. & Panero and A. trichophylla (Dusen) Magenta (comb. nov.), which had previously been treated as synonyms because of their high similarity. Therefore, the present study aimed to evaluate the anatomy of the aerial organs, and the yield and chemical composition of the essential oils from these three species, to determine the differences among them and thereby assist in species distinction. The anatomical analysis identified characteristics unique to each species, which are primarily related to the position and occurrence of secretory structures. Histochemical analysis demonstrated that the glandular trichomes and the canals secrete lipophilic substances, which are characterised by the presence of essential oils. The analysis of these essential oils identified monoterpenes as their major constituent and allowed for the recognition of chemical markers for each species. The anatomical and chemical characteristics identified by the present study confirmed that the studied samples belong to three distinct taxa.
Resumo:
Dengue is the most important arbovirus in the world with an estimated of 50 million dengue infections occurring annually and approximately 2.5 billion people living in dengue endemic countries. Yellow fever is a viral hemorrhagic fever with high mortality that is transmitted by mosquitoes. Effective vaccines against yellow fever have been available for almost 70 years and are responsible for a significant reduction of occurrences of the disease worldwide; however, approximately 200,000 cases of yellow fever still occur annually, principally in Africa. Therefore, it is a public health priority to develop antiviral agents for treatment of these virus infections. Crotalus durissus terrificus snake, a South American rattlesnake, presents venom with several biologically actives molecules. In this study, we evaluated the antiviral activity of crude venom and isolated toxins from Crotalus durissus terrificus and found that phospholipases A(2) showed a high inhibition of Yellow fever and dengue viruses in VERO E6 cells. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.
Resumo:
This study evaluated for the first time the life cycle of Amblyomma ovale in the laboratory. For this purpose, larvae and nymphs were exposed to Gallus gallus (chickens), Cavia porcellus (guinea pigs), Rattus norvegicus (wistar rats), Oryctolagus cuniculus (domestic rabbits), Calomys callosus (vesper mouse), and Didelphis albiventris (white-eared opossum). Nymphs were also exposed to Nectomys squamipes (South American water rat). Adult ticks were fed on dogs. The life-cycle of A. ovale in laboratory could be completed in an average period of ca. 190 days, considering prefeeding periods of 30 days for each of the parasitic stages. Vesper mice were the most suitable host for A. ovale larvae, whereas water rats were the most suitable host for A. ovale nymphs. Our results, coupled with literature data, strongly indicate that small rodents have an important role in the life history of A. ovale. Chickens (the only avian host used in the present study) showed to be moderately suitable hosts for subadult A. ovale ticks, indicating that wild birds might have a secondary role in the life history of A. ovale. Domestic dogs showed to be highly suitable for the adult stage of A. ovale, in agreement with literature data that indicate that the domestic dog is currently one of the most important hosts of A. ovale adult ticks in Latin America.
Resumo:
Despite the general belief that the interaction between extrafloral nectaries (EFNs) and ants is mutualistic, the defensive function of EFNs has been poorly documented in South American savannas. In this article, we evaluate the potential impact of EFNs (benefits and costs) on two species of plants from the dry areas of Central Brazil, Anemopaegma album and Anemopaegma scabriusculum (Bignoniaceae). In particular, we characterize the composition of substances secreted by the EFNs, test whether EFNs attract ants, and whether ants actually present a defensive role, leading to reduced herbivory and increased plant fitness. Histochemical analyses indicated that EFNs from both species of Anemopaegma secrete an exudate that is composed of sugars, and potentially lipids and proteins. Furthermore, EFNs from both species were shown to present a significant role in ant attraction. However, contrary to common expectations, ants were not found to protect plants against herbivore attack. No effect was found between ant visitation and flower or fruit production in A. album, while the presence of ants led to a significant decrease in flower production in A. scabriusculum. These results suggest that EFNs might present a similar cost and benefit in A. album, and a higher cost than benefit in A. scabriusculum. Since the ancestor of Anemopaegma occupied humid forests and already presented EFNs that were maintained in subsequent lineages that occupied savannas, we suggest that phylogenetic inertia might explain the presence of EFNs in the species of Anemopaegma in which EFNs lack a defensive function.
New Protein Sources in Adults Diet for Mass-rearing of Anastrepha fraterculus (Diptera: Tephritidae)
Resumo:
The aim of this study was to find alternatives to reduce the cost of mass production of the South American fruit fly (A. fraterculus) by looking for locally available products as protein source in the diet of adults to replace the imported product without changing the quality parameters. Two yeast from a Brazilian company were evaluated. The quality parameters showed that the imported hydrolyzed yeast used in the adult diet could be perfectly replaced by the local products tested, with a reduction of over 80% of the cost of the diet. The quality of the produced insects remained the same and there were improvements in some quality parameters such as the volume of eggs produced, number of adults flying and longevity under the stress.
Resumo:
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-beta 2, PI3K, ERK, p38 and independent of G alpha i protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.
Resumo:
We investigate the strong magnetic and gravity anomalies of the Goias Alkaline Province (GAP), a region of Late Cretaceous alkaline magmatism along the northern border of the Parana Basin, Brazil. The alkaline complexes (eight of which are present in outcrops, two others inferred from magnetic signals) are characterized by a series of small intrusions forming almost circular magnetic and gravimetric anomalies varying from -4000 to +6000 nT and from -10 to +40 mGal, respectively. We used the Aneuler method and Analytical Signal Amplitude to obtain depth and geometry for mapped sources from the magnetic anomaly data. These results were used as the reference models in the 3D gravity inversion. The 3D inversion results show that the alkaline intrusions have depths of 10-12 km. The intrusions in the northern GAP follow two alignments and have different sizes. In the anomaly magnetic map, dominant guidelines correlate strongly with the extensional regimes that correlate with the rise of alkaline magmatism. The emplacement of these intrusions marks mechanical discontinuities and zones of weakness in the upper crust. According to the 3D inversion results, those intrusions are located within the upper crust (from the surface to 18 km depth) and have spheres as the preferable geometry. Such spherical shapes are more consistent with magmatic chambers instead of plug intrusions. The Registro do Araguaia anomaly (similar to 15 by 25 km) has a particular magnetic signature that indicates that the top is deeper than 1500 m. North of this circular anomaly are lineaments with structural indices indicating contacts on their edges and dikes/sills in the interiors. Results of 3D inversion of magnetic and gravity data suggest that the Registro do Araguaia is the largest body in the area, reaching 18 km depth and indicating a circular layered structure. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. Results: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades + Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. Conclusions: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.
Resumo:
The global distribution of bat taxa indicates that the Atlantic and Pacific Oceans are effective barriers to movement between the Old and New Worlds. For instance, one of the major suborders, Yinpterochiroptera, has an exclusively Old World distribution, and within the other, Yangochiroptera, no species and only five genera are common to both. However, as bats are sometimes blown out to sea, and have colonised isolated islands, occasional natural movement between the New and Old Worlds does appear to be possible. Here we identify new genotypes of a blood parasite, Trypanosoma dionisii, in Old World bats that are closely related to South American strains. Using highly conservative calibration points, divergence of Old and New World strains is estimated to have occurred 3.2-5.0 million years ago (MYA), depending on the method used (upper 95% CL for maximum time 11.4 MYA). The true date of divergence is likely to be considerably more recent. These results demonstrate that taxon-specific parasites can indicate historical movements of their hosts, even where their hosts may have left no lasting phylogenetic footprint. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The paleoclimatic record of Jureia Paleolagoon, coastal southeastem Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Jureia Paleolagoon - one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression-regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modem-day short-duration North Atlantic climatic event, such as the 82 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved.
Resumo:
The regional monsoons of the world have long been viewed as seasonal atmospheric circulation reversal-analogous to a thermally-driven land-sea breeze on a continental scale. This conventional view of monsoons is now being integrated at a global scale and accordingly, a new paradigm has emerged which considers regional monsoons to be manifestations of global-scale seasonal changes in response to overturning of atmospheric circulation in the tropics and subtropics, and henceforth, interactive components of a singular Global Monsoon (GM) system. The paleoclimate community, however, tends to view 'paleomonsoon' (PM), largely in terms of regional circulation phenomena. In the past decade, many high-quality speleothem oxygen isotope (delta O-18) records have been established from the Asian Monsoon and the South American Monsoon regions that primarily reflect changes in the integrated intensities of monsoons on orbital-to-decadal timescales. With the emergence of these high-resolution and absolute-dated records from both sides of the Equator, it is now possible to test a concept of the 'Global-Paleo-Monsoon' (GPM) on a wide-range of timescales. Here we present a comprehensive synthesis of globally-distributed speleothem delta O-18 records and highlight three aspects of the GPM that are comparable to the modern GM: (1) the GPM intensity swings on different timescales; (2) their global extent; and (3) an anti-phased inter-hemispheric relationship between the Asian and South American monsoon systems on a wide range of timescales.
Resumo:
Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations. (c) 2012 Elsevier B.V. All rights reserved.