973 resultados para Sorghum arundinaceum
Resumo:
In Arkansas, blackbirds are responsible for appreciable damage to rice, grain sorghum, oats, wheat, rye, and corn. By far, the greatest damage is to rice. As is shown in the following table, the losses to rice producers amounted to an estimated $3,049,055 in 1968, the last year that a survey was made. Nearly two-thirds (63%) of this loss was to standing rice destroyed and to the cost of bird control measure in standing rice. The remaining losses ($2,140,320 ) are to seeding or to efforts to control bird depredations to new seeding, (see Table 1). Blackbird damage to grain sorghum and corn was mostly to standing grain; that to oats, wheat and rye, to seeding, although there is occasional damage to standing grain. Additional problems are caused by blackbirds in feed lots. The total losses to Arkansas agricultural producers due to blackbirds in 1968 was about $3,500,000. Bird damage in a specific locality and on specific crops seems to vary in intensity from year to year. However, surveys during the past ten years suggest a fairly consistent level of total damage state-wide. The damage in 1968-and I believe in 1969—was somewhat lighter than we have come to expect from past exper¬ience. (See table 2.) On a per acre basis the damage in 1968 showed a considerable decline when compared to previous years. A part of this decline is probably a temporary situation. Some of the decline in losses to rice and grain sorghum, however, are due to changes in varieties, such as development of bird-resistant milo, and to changes in cultural methods. Further appreciable reductions due to changes in these factors seem unlikely, (see table 3.) Since rice producers sustain the greatest losses to birds, they have generated the greatest demand for bird control programs. Three species are responsible for most of the damage to rice. They are the red-winged blackbird, common grackle and brown-headed cowbird. These birds have created problems for rice producers since the first successful rice crop was grown near Lonoke, Arkansas, in 1904.
Resumo:
Our chairman has wisely asked that we not spend all of our time here telling each other about our bird problems. In the Southeast, our difficulties with blackbirds are based upon the same bird habits that cause trouble elsewhere: they flock, they roost and they eat, generally taking advantage of the readily available handouts that today's agricul¬tural practices provide. Those of us on the receiving end of these de¬predations of course think that damage in our own particular area must be far the worst, anywhere. Because of the location of our meeting place today, perhaps it is worthwhile to point out that a report prepared by our Bureau's Washington office this year outlined the problem of blackbird damage to corn in the Middle Atlantic States, the Great Lakes Region and in Florida, and then followed with this statement--"An equally serious problem occurs in rice and grain sorghum fields of Arkansas, Mississippi, Texas and Louisiana." The report also men¬tions that the largest winter concentrations of blackbirds are found in the lower Mississippi Valley. Our 1963-64 blackbird-starling survey showed 43 principal roosts totaling approximately 100 million of these birds in Virginia, the Carolinas, Georgia, Alabama, Tennessee and Kentucky. We have our own birds during the summer plus the "tourist" birds from up here and elsewhere during the winter, and all of these birds must eat, so suffice it to say that we, too, have some bird problems in the Southeast. I'm sure you're more interested in what we're doing about them. To keep this in perspective also, please bear in mind that against the magnitude of these problems, our blackbird control research staff at Gainesville consists of 3 biologists, 1 biochemist and one technician. And unfortunately, none of us happens to be a miracle worker. I think, though, we have made great progress toward solving the bird problems in the Southeast for the man-hours that have been expended in this re¬search. My only suggestion to those who are impatient about not having more answers is that they examine the budget that has been set up for this work. Only then could we intelligently discuss what might be expected as a reasonable rate of research progress. When I think about what we have accomplished in a short span of time, with very small expenditure, I can assure you that I am very proud of our small research crew at Gainesville--and I say this quite sincerely. At the Gainesville station, we work under two general research approaches to the bird damage problem. These projects have been assigned to us. The first is research on management of birds, particularly blackbirds and starlings destructive to crops or in feedlots, and, secondly, the development and the adaptation of those chemical compounds found to be toxic to birds but relatively safe to mammals. These approaches both require laboratory and field work that is further subdivided into several specific research projects. Without describing the details of these now, I want to mention some of our recent results. From the results, I'm sure you will gather the general objectives and some of the procedures used.
Resumo:
Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.
Resumo:
Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosate-dicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 ga.i. ha(-1) for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a. e. ha(-1). The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a. e. ha(-1). Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a. e. ha(-1) rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.
Resumo:
Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.
Resumo:
In durum wheat, two major QTL for grain yield (Qyld.idw-2B and Qyld.idw-3B) and related traits were identified in a recombinant population derived from Kofa and Svevo (Maccaferri et al. 2008). To further investigate the genetic and physiological basis of allelic variation for this important trait, the fine mapping of Qyld.idw-2B e Qyld.idw-3B was done during the PhD. In this regard, new molecular markers were added to increase the map resolution in the target interval. For Qyld.idw-2B region COS markers derived from the synteny between wheat and rice/ sorghum /brachypodiu genomes were screened. While for Qyld.idw-3B region SSR, ISBP and COS markers obtained from BAC end-sequences and BAC sequences generated during the construction of the 3B physical map (Paux et al., 2008) were screened. In the RIL population a final map resolution of 2,8 markers/cM for Qyld.idw-2B and 0,6 markers/cM for Qyld.idw-3B were obtained. Eighteen pairs of near-isogenic lines (NILs) for Qyld.idw-3B were obtained from F4:5 heterogeneous inbred families. In order to confirm the phenotypic effect of the QTL all pairs were evaluated in field trials (2010 and 2011) for all traits. Three pairs of NILs, with contrasted haplotypes at the target region, were crossed to produce a large F2 population (ca. 7,500 plants in total) that was screened for the identification of recombinants. A total of 233 homozygous F4:5 segmental isolines were obtained and the phenotypic and genotypic characterization of these materials were done. A fine mapping for Qyld.idw-3B was obtained and the QTL peak was identified in a interval of 0,4 cM. All markers were anchored to the Chinese Spring physical map of chr. 3B, which allowed us to identify the BAC Contigs spanning the QTL region and to assign the QTL peak to Contig 954. Sequencing of this contig has revealed the presence of 42 genes.
Resumo:
In genere, negli studi di vocazionalità delle colture, vengono presi in considerazione solo variabili ambientali pedo-climatiche. La coltivazione di una coltura comporta anche un impatto ambientale derivante dalle pratiche agronomiche ed il territorio può essere più o meno sensibile a questi impatti in base alla sua vulnerabilità. In questo studio si vuole sviluppare una metodologia per relazionare spazialmente l’impatto delle colture con le caratteristiche sito specifiche del territorio in modo da considerare anche questo aspetto nell’allocazione negli studi di vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di alcune colture erbacee alimentari e da energia, relazionati a mappe di vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di coefficienti di rischio di allocazione per ogni combinazione coltura-area vulnerabile. Le colture energetiche sono state considerate come un uso alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha mostrato che l’allocazione delle colture può essere diversa in base al tipo e al numero di impatti considerati. Il risultato sono delle mappe in cui sono riportate le distribuzioni ottimali delle colture al fine di minimizzare gli impatti, rispetto a mais e grano, due colture alimentari importanti nell’area di studio. Le colture con l’impatto più alto dovrebbero essere coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o moderata, mentre, le colture energetiche erbacee perenni, come il panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, rappresentando cosi una opportunità per aumentare la sostenibilità di uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe di uso attuale del suolo, può aiutare a valutarne il suo grado di sostenibilità ambientale.
Resumo:
Il presente lavoro trae origine dagli obiettivi e dalle relative misure applicative della riforma dell’OCM zucchero del 2006 e nello specifico dal Piano nazionale per la razionalizzazione e riconversione della produzione bieticolo-saccarifera approvato dal MIPAF nel 2007. Lo studio riguarda la riconversione dello zuccherificio di Finale Emilia (MO), di appartenenza del Gruppo bieticolo-saccarifero Co.Pro.B, in un impianto di generazione di energia elettrica e termica che utilizza biomassa di origine agricola per la combustione diretta. L'alimentazione avviene principalmente dalla coltivazione dedicata del sorgo da fibra (Sorghum bicolor), integrata con risorse agro-forestali. Lo studio mostra la necessità di coltivazione di 4.400 ettari di sorgo da fibra con una produzione annua di circa 97.000 t di prodotto al 75% di sostanza secca necessari per l’alimentazione della centrale a biomassa. L’obiettivo é quello di valutare l’impatto della nuova coltura energetica sul comprensorio agricolo e sulla economia dell’impresa agricola. La metodologia adottata si basa sulla simulazione di modelli aziendali di programmazione lineare che prevedono l’inserimento del sorgo da fibra come coltura energetica nel piano ottimo delle aziende considerate. I modelli predisposti sono stati calibrati su aziende RICA al fine di riprodurre riparti medi reali su tre tipologie dimensionali rappresentative: azienda piccola entro i 20 ha, media da 20 a 50 ha e grande oltre i 50 ha. La superficie di entrata a livello aziendale, se rapportata alla rappresentatività delle aziende dell’area di studio, risulta insufficiente per soddisfare la richiesta di approvvigionamento dell’impianto a biomassa. Infatti con tale incremento la superficie di coltivazione nel comprensorio si attesta sui 2.500 ettari circa contro i 4.400 necessari alla centrale. Lo studio mostra pertanto che occorre un incentivo superiore, di circa 80-90 €/ha, per soddisfare la richiesta della superficie colturale a livello di territorio. A questi livelli, la disponibilità della coltura energetica sul comprensorio risulta circa 9.500 ettari.
Resumo:
Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) è una specie esotica invasiva di origine centro americana e introdotta in Europa agli inizi degli anni ’90, in Italia nel 1998. Considerata negli Stati Uniti la principale avversità del mais (Zea mais L.), è oggi presente in quasi tutti i Paesi europei dove è presente tale coltura. Poiché il mais risulta l’ospite prioritario di Diabrotica, attualmente il principale metodo di contenimento consiste nella rotazione con una coltura non ospite. L’obiettivo del lavoro è stato quello di indagare sulle piante ospiti alternative al mais nel nostro ambiente, accertando il ruolo che possono avere le infestanti o altre Poaceae coltivate nella biologia della Diabrotica. Tali essenze sono state scelte tra specie mai sottoposte a sperimentazione e tra quelli già oggetto di indagini, ma su cui si sono ottenuti esiti discordi o non soddisfacenti. Sono state allestite prove con infestazione artificiale in ambiente controllato e prove in campo per valutare la sopravvivenza larvale e il completamento del ciclo, nonché le prestazioni biologiche degli individui ottenuti. Le ricerche hanno permesso di osservare sopravvivenza di Diabrotica su numerose graminacee, in particolare cereali. Tale capacità è confermata dalla presenza di larve di diversa età e in alcuni casi di pupe sulle specie ospiti alternative, sia con infestazione artificiale che in campo. Tuttavia crescita e sviluppo su queste piante sono stati più lenti del mais e gli stadi giovanili trovati hanno mostrato caratteristiche morfometriche inferiori rispetto a quelli del mais. Adulti non sono mai stati raccolti in campo, mentre questo si è verificato in condizioni controllate. Le specie che meritano maggior attenzione sono i cereali Triticum spelta e Panicum miliaceum e l’infestante Sorghum halepense. Si potrebbe dunque ipotizzare che alcune specie vegetali possano fungere da ospite secondario quando non è presente il mais riducendo l’efficacia dell’avvicendamento.
Resumo:
Il termine biochar definisce il prodotto solido derivante dalla pirolisi di un qualsiasi materiale organico, con lo specifico scopo di essere applicato nei suoli sia per fini agronomici che di gestione ambientale. Un suo utilizzo in maniera "responsabile" richiede però una piena comprensione delle sue proprietà e dei meccanismi che controllano la sua attività nel terreno, che dipendono dalla biomassa di partenza e dalle condizioni di sintesi tramite pirolisi. Infatti le condizioni di pirolisi, in particolare la temperatura di processo e il tempo di residenza, determinano biochar con caratteristiche differenti. In questo lavoro di tesi sono stati prodotti biochar da due diverse tipologie di biomassa residuale ampiamente disponibili (stocchi di mais e pollina). Per ciascuna biomassa sono state scelte tre condizioni di pirolisi (400°C x 20 minuti, 500°C x 10 minuti e 600°C x 5 minuti). Sui biochar ottenuti sono state effettuate le seguenti determinazioni: analisi elementare, Pirolisi‐GC‐MS, idrocarburi policiclici aromatici (IPA), acidi grassi volatili (VFA), azoto ammoniacale (N‐NH4 +), pH, conduttività elettrica e ritenzione idrica. Infine i biochar sintetizzati sono stati utilizzati per fare due test di germinazione per valutare l'effetto sulla formazione delle prime strutture di crescita delle plantule, tramite test di tossicità brevi con piastre Petri. Il primo test è stato condotto a concentrazione crescente di miscele acqua/biochar (2, 5, 40 e 100 g/L sulla base delle quantità di biochar utilizzate come ammendante nel suolo), sulla germinazione seguendo la metodologia normata dalla ISO 11269:2012. I semi utilizzati nel primo test sono stati quelli del crescione (Lepidium sativum L.) come specie dicotiledone, e del sorgo (Sorghum saccharatum M.) come monocotiledone. Il secondo saggio di tossicità eseguito è stato quello descritto dalla normativa in materia UNI 11357, valutando l'eventuale effetto di tossicità alla massima concentrazione delle varie tipologie di biochar, utilizzando come specie dicotiledoni il cetriolo (Cucumis sativus L.) ed il crescione (Lepidium sativum L.), come monocotiledone il sorgo (Sorghum saccharatum M.). Per i biochar da stocchi di mais, rappresentativi di biomasse erbacee e con diverso grado di carbonizzazione, non si osservano effetti apprezzabili alle condizioni di uso agricolo. Nel caso dei biochar da pollina si osservano invece inibizioni alla germinazione sin dalle concentrazioni più basse. In particolare, quello pirolizzato a 400°C mostra un potenziale effetto tossico più marcato, probabilmente associato ad un contenuto di IPA e VFA superiore a quello degli altri biochar.
Resumo:
Methane yield of ligno-cellulosic substrates (i.e. dedicated energy crops and agricultural residues) may be limited by their composition and structural features. Hence, biomass pre-treatments are envisaged to overcome this constraint. This thesis aimed at: i) assessing biomass and methane yield of dedicated energy crops; ii) evaluating the effects of hydrothermal pre-treatments on methane yield of Arundo; iii) investigating the effects of NaOH pre-treatments and iv) acid pre-treatments on chemical composition, physical structure and methane yield of two dedicated energy crops and one agricultural residue. Three multi-annual species (Arundo, Switchgrass and Sorghum Silk), three sorghum hybrids (Trudan Headless, B133 and S506) and a maize, as reference for AD, were studied in the frame of point i). Results exhibit the remarkable variation in biomass yield, chemical characteristics and potential methane yield. The six species alternative to maize deserve attention in view of a low need of external inputs but necessitate improvements in biodegradability. In the frame of point ii), Arundo was subjected to hydrothermal pre-treatments at different temperature, time and acid catalyst (with and without H2SO4). Pre-treatments determined a variable effect on methane yield: pre-treatments without acid catalyst achieved up to +23% CH4 output, while pre-treatments with H2SO4 catalyst incurred a methanogenic inhibition. Two biomass crops (Arundo and B133) and an agricultural residue (Barley straw) were subject to NaOH and acid pre-treatments, in the frame of point iii) and iv), respectively. Different pre-treatments determined a change of chemical and physical structure and an increase of methane yield: up to +30% and up to +62% CH4 output in Arundo with NaOH and acid pre-treatments, respectively. It is thereby demonstrated that pre-treatments can actually enhance biodegradability and subsequent CH4 output of ligno-cellulosic substrates, although pre-treatment viability needs to be evaluated at the level of full scale biogas plants in a perspective of profitable implementation.
Resumo:
In chapter 1 and 2 calcium hydroxide as impregnation agent before steam explosion of sugarcane bagasse and switchgrass, respectively, was compared with auto-hydrolysis, assessing the effects on enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) at high solid concentration of pretreated solid fraction. In addition, anaerobic digestion of pretreated liquid fraction was carried out, in order to appraise the effectiveness of calcium hydroxide before steam explosion in a more comprehensive way. In As water is an expensive input in both cultivation of biomass crops and subsequent pretreatment, Chapter 3 addressed the effects of variable soil moisture on biomass growth and composition of biomass sorghum. Moreover, the effect of water stress was related to the characteristics of stem juice for 1st generation ethanol and structural carbohydrates for 2nd generation ethanol. In the frame of chapter 1, calcium hydroxide was proven to be a suitable catalyst for sugarcane bagasse before steam explosion, in order to enhance fibre deconstruction. In chapter 2, effect of calcium hydroxide on switchgrass showed a great potential when ethanol was focused, whereas acid addition produced higher methane yield. Regarding chapter 3, during crop cycle the amount of cellulose, hemicellulose and AIL changed causing a decrease of 2G ethanol amount. Biomass physical and chemical properties involved a lower glucose yield and concentration at the end of enzymatic hydrolysis and, consequently, a lower 2G ethanol concentration at the end of simultaneous saccharification and fermentation, proving that there is strong relationship between structure, chemical composition, and fermentable sugar yield. The significantly higher concentration of ethanol at the early crop stage could be an important incentive to consider biomass sorghum as second crop in the season, to be introduced into some agricultural systems, potentially benefiting farmers and, above all, avoiding the exacerbation of the debate about fuel vs food crops.
Resumo:
This work presents the proceedings of the twelfth symposium which was held at Kansas State University on April 24, 1982. Since a number of the contributions will be published in detail elsewhere, only brief reports are included here. Some of the reports describe current progress with respect to ongoing projects. Requests for further information should be directed to Dr. Peter Reilly at Iowa State University, Dr. V. G. Murphy at Colorado State University, Dr. Rakesh Bajpai at University of Missouri, Dr. Ed Clausen at University of Arkansas, Dr. L. T. Fan and Dr. L. E. Erickson at Kansas State University. ContentsA Kinetic Analysis of Oleaginous Yeast Fermentation by Candida curvata on Whey Permeate, B.D. Brown and K.H. Hsu, Iowa State University Kinetics of Biofouling in Simulated Water Distribution Systems Using CSTR, T.M. Prakash, University of Missouri Kinetics of Gas Production by C. acetobutylicum, Michael Doremus, Colorado State University Large Scale Production of Methane from Agricultural Residues, O.P. Doyle, G.C. Magruder, E.C. Clausen, and J.L. Gaddy, University of Arkansas The Optimal Process Design for Enzymatic Hydrolysis of Wheat Straw, M.M Gharpuray and L.T. Fan, Kansas State University Extractive Butanol Fermentation, Michael Sierks, Colorado State University Yields Associated with Ethyl Alcohol Production, M.D. Oner, Kansas State University Estimation of Growth Yield and Maintenance Parameters for Microbial Growth on Corn Dust, B.O. Solomon, Kansas State University Milling of Ensiled Corn, Andrzej Neryng, Iowa State University Protein Extraction from Alfalfa, Ravidranath Joshi, Colorado State University Analysis of Disaccharides by Capillary Gas Chromatography, Z.L. Nikolov, Iowa State University Characterization of High Viscosity Fermentations in Tower Fermentors, S.A. Patel and C.H. Lee, Kansas State University Utilization of Sugars in Sorghum Molasses by Clostridium acetobutylicum B. Hong, K.C. Shin, and L.T. Fan, Kansas State University
Resumo:
Background: Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. Results: The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. Conclusions: It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.
Resumo:
The Annual Biochemical Engineering Symposium series is devoted to presentations by students on their research topics. The fourteenth event, held in 1984, was organized at the University of Missouri–Columbia. It was attended by the biochemical engineering faculty and the students from Colorado State University, Iowa State University, Kansas State University, University of Missouri–Columbia, University of Missouri–Rolla and Washington University, St. Louis. Contents"Estimation of Product Formation Kinetics and Microbial Yield Parameters for Anaerobic Organic Acid and Solvent Production," M.D. Oner, Kansas State University "Characterization of Soy Protein Texturization in a Complex Bioreactor," J.L. Ibave, Colorado State University "Acid and Solvent Fermentations Using Mixed Cultures," D. Stevens, University of Missouri–Columbia "Preliminary Process Design for Ethanol from Sweet Sorghum Ensilage Feedstock," Keith D. Lange, Colorado State University "Lamella Settlers in Ethanol Fermentation," Yong Jayanata, University of Missouri–Columbia "Bubble Size Distribution in the Down Flow Section of an Air-Lift Column," Snehal A. Patel and C.H. Lee, Kansas State University "The Sensitivity of Plant Cells to Shear Stress," Morris Z. Resenberg and Eric H. Dunlap, Washington University, St. Louis "Estimation of Growth Yield Parameters Associated with Microbial Growth," Hyeon Y. Lee, Kansas State University "Capillary Gas Chromatography of Trimethylsilylated Trisaccharides," Etienne J.M. Selosse, Iowa State University "Subsite Mapping of an Endo-Xylanase Labeled Xylooligo-saccharides," Bernard Y. Tao, Iowa State University "Cellulase Enzyme Recycle," Kate M.V. Baptie, Colorado State University "Non-Homogeneous Poisson Renewal Reward Process for Modelling Enzymatic Hydrolysis of Cellulose," M.M. Gharpuray and L.T. Fan, Kansas State University