921 resultados para Solid-state absorption
Resumo:
The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.
Resumo:
Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.
Resumo:
The present work discusses the findings obtained from simulations of semi solid die filling of a steering knuckle, prior to actual component development using in-house developed rheo pressure die casting system. Die filling capability of A356 Al alloy at semi-solid state has been investigated using commercial software Flow-3Dcast to optimise the pouring temperature of semi-solid slurry into the die cavity, while all other variables such as gating design, die preheat temperature and injection velocity are kept constant based on the prior knowledge obtained from trial numerical simulations and experimentation. Efforts have been made to nullify the essence of costly, time consuming experiments towards obtaining high-quality castings out of the findings obtained from numerical simulations. The optimum pouring temperature identified in the present study is 610 A degrees C, which facilitates smoother slurry flow, minimum surface defect concentration, uniform temperature field and solid fraction distribution within the component cavity.
Resumo:
We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
While absorption and emission spectroscopy have always been used to detect and characterize molecules and molecular complexes, the availability of ultrashort laser pulses and associated computer-aided optical detection techniques allowed study of chemical processes directly in the time domain at unprecedented time scales, through appearance and disappearance of fluorescence from participating chemical species. Application of such techniques to chemical dynamics in liquids, where many processes occur with picosecond and femtosecond time scales lead to the discovery of a host of new phenomena that in turn led to the development of many new theories. Experiment and theory together provided new and valuable insight into many fundamental chemical processes, like isomerization dynamics, electron and proton transfer reactions, vibrational energy and phase relaxation, photosynthesis, to name just a few. In this article, we shall review a few of such discoveries in attempt to provide a glimpse of the fascinating research employing fluorescence spectroscopy that changed the field of chemical dynamics forever.
Resumo:
Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
The influence of substitution of Bi atom instead of S atoms on the structural and optical properties of thin films of As40S60 are reported. The density is found to be increased with the addition Bi heavy metal into As2S3. The amorphous to polycrystalline structure of the bulk sample is observed for Bi more than 7%. The glass transition temperature is found to be decreased with addition of Bi. The absorption edge shifts to shorter wavelength, thereby decreasing optical band gap of BixAs(40)S(60-x) (x= 0,2 and 4% here) film. The optical parameter change is discussed from the stand point of chemical bonds formed in the films and related to the defect states produced due to incorporation of Bi atoms in place of chalcogenide S atoms.
Resumo:
A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small-angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst phase of folding, we find that FRET experiments overestimate radius of gyration, R-g, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract R-g from the FRET efficiency. FRET experiments estimate approximate to 6 angstrom decrease in R-g when the actual decrease is approximate to 3 angstrom on guanidinium chloride denaturant dilution from 7.5 to 1 M, thereby suggesting pronounced compaction in the protein dimensions in the burst phase. The approximate to 3 angstrom decrease is close to the statistical uncertainties of the R-g data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition-state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the Psi-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depends on protein topology and is not stabilized by local interactions alone.
Resumo:
We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.
Resumo:
Sn4+-doped In2O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8nm, 10% Sn4+) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3)(3)OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around =1950nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (approximate to 35mcm(-1)). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems.
Resumo:
Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.
Resumo:
In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.
Resumo:
We report on the upconversion luminescence of a pure YVO4 single crystal excited by an infrared femtosecond laser. The luminescent spectra show that the upconversion luminescence comes from the transitions from the lowest excited states T-3(1), T-3(2) to the ground state (1)A(1) of the VO43-. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the simultaneous absorption of three infrared photons promotes the VO43- to excited states, which quickly cascade down to lowest excited states, and radiatively relax to ground states, resulting in the broad characteristic fluorescence of VO43-. (c) 2005 Optical Society of America.