943 resultados para Solar cells.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sevenfold enhancement of photoconversion efficiency was achieved by incorporation of peripheral ruthenium complexes to a porphyrin dye, generating supramolecular effects capable of playing several key roles (e.g., transferring energy to, inhibiting aggregation, and accepting the hole generated in the porphyrin center after electron injection), providing new insights for the design of better DSSC photosensitizers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and photophysical characterization of a PPV-type copolymer containing a fluorene derivative alternated with thiophene units is presented: poly(9,9'-dioctylfluorene-thiophene) (LAPPS29). Photophysical studies demonstrated that in the solid state only preformed ground state aggregates are responsible for exciton formation. These aggregates are formed with a wide range of size distribution. The emission from isolated segments is quenched either by resonant energy transfer, or by migration processes. Also, the main photovoltaic parameters are discussed in connection with the photophysical behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the synthesis of a copolymer structure, poly(9,9′-n-di-hexyl-2,7-fluorene-alt-2,5- bithiophene), referred to herein as LaPPS43, and its physico-chemical characterization. Thin films of this polymer mixed with phenyl-C61-butyric acid methyl ester (PCBM) were used as the active layer in photovoltaic devices using the ITO/PEDOT:PSS/LaPPS43: PCBM/Ca/Al bulk heterojunction structure. The devices of different active layer thicknesses were electrically studied using J-V curves and the Photo-Celiv technique. The obtained results show that LaPPS43 combined with PCBM is a promising system for photovoltaic devices. Device performance is discussed in terms of the mean drift distance x for charge carriers. Photophysical data showed that the excitonic species are all localized in the aggregated forms. The mechanism of exciton formation and dissociation is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemistry can contribute, in many different ways to solve the challenges we are facing to modify our inefficient and fossil-fuel based energy system. The present work was motivated by the search for efficient photoactive materials to be employed in the context of the energy problem: materials to be utilized in energy efficient devices and in the production of renewable electricity and fuels. We presented a new class of copper complexes, that could find application in lighting techhnologies, by serving as luminescent materials in LEC, OLED, WOLED devices. These technologies may provide substantial energy savings in the lighting sector. Moreover, recently, copper complexes have been used as light harvesting compounds in dye sensitized photoelectrochemical solar cells, which offer a viable alternative to silicon-based photovoltaic technologies. We presented also a few supramolecular systems containing fullerene, e.g. dendrimers, dyads and triads.The most complex among these arrays, which contain porphyrin moieties, are presented in the final chapter. They undergo photoinduced energy- and electron transfer processes also with long-lived charge separated states, i.e. the fundamental processes to power artificial photosynthetic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective of these four first chapters is to have a complete understanding of the supramolecular organisation of several complementary modules able to form 2-D networks first in solution using optical spectroscopy measurements as function of solvent polarity , concentration and temperature, and then on solid surface using microscopy techniques such as STM, AFM and TEM. The last chapter presents another type of supramolecular material for application in solar cells technology involving fullerenes and OPV systems. We describes the photoinduced energy and electron process using transient absorption experiments. All these systems provide an exceptional example for the potential of the supramolecular approach as an alternative to the restricted lithographic method for the fabrication of adressable molecular devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit 'Liquid Crystalline Hexabenzocoronenes as Organic Molecular Materials - Synthesis, Characterization and Application' war durch drei Schwerpunkte definiert:1. Verbesserung der Synthese von Hexabenzocoronen Derivaten mit sechsfacher Alkyl-Substitution,2. Entwicklung von molekularen Materialien mit verbesserten Eigenschaften wie zum Beispiel Löslichkeit und Verarbeitbarkeit,3. Einsatz der entwickelten Moleküle in optoelektronischen Bauteilen wie zum Beispiel organischen Solarzellen und Feld-Effekt-Transistoren.Mit Hilfe einer neuen Syntheseroute ist es gelungen Aryl-Aryl und Aryl-Alkyl Kupplungen sehr spät in der Reaktionssequenz von Hexabenzocoronenen einzusetzen. Dies führte zu einer Vielzahl substituierter HBC Derivate. Die Einführung eines Phenyl Spacers zwischen den HBC Kern und die äußeren Alkylketten, wie zum Beispiel in HBC-PhC12, hatte eine Vielzahl positiver Effekte wie dramatisch verbesserte Löslichkeit und Flüssigkristallinität bei Raumtemperatur zur Folge. Die Kombination dieser Phänomene ermöglichte die Bildung hochgeordneter Filme, welche sehr wichtig für den Einsatz in organischen Bauelementen sind. Mit Hilfe von STM Techniken an der Fest-Flüssig Phasengrenze wurden hochgeordnete 2-D Strukturen der HBC Moleküle gefunden. Die Kombination von extrem hoher kolumnarer Ordnung, bestimmt mit Hilfe der Festkörper NMR Spektroskopie, mit einer konstant hohen Ladungsträgerbeweglichkeit, führte zu dem sehr erfolgreichen Einsatz von HBC-PhC12 in organischen Solarzellen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit untersucht mittels lichtunterstützter Tunnelmikroskopie (STM) den Elektronentransport in farbstoffbedeckten, nanoporösen TiO2-Schichten, die in photoelektrochemischen Solarzellen eingesetzt werden. Transportrelevante Eigenschaften wie die elektronische Zustandsdichte sowie lichtinduzierte Vorgänge wie der Aufbau einer lichtinduzierten Oberflächenladung und lokale Photoströme werden ortsaufgelöst gemessen. Für einen möglichen Einsatz in lichtunterstützter Tunnelmikroskopie werden desweiteren Gold-Nanopartikel auf einer Amino-Hexanthiol-Monolage auf Coulomb-Blockaden untersucht. Den zweite Schwerpunkt stellen methodische Arbeiten zur Messung optischer Nahfelder in STM-Experimenten dar. Erstens sollen die Vorteile von Apertur- und aperturloser optischer Rasternahfeld-Mikroskopie mit komplett metallisierten Faserspitzen verbunden werden, die durch die Faser beleuchtet werden. Es gelingt nicht, theoretisch vorhergesagte hohe optische Auflösungen zu bestätigen. Zweitens werden transparente Spitzen aus Sb-dotiertem Zinnoxid erfolgreich als Tunnelspitzen getestet. Die Spitzen ermöglichen STM-Elektrolumineszenz-Experimente zur Charakterisierung optischer Nahfelder, ohne diese durch eine metallische Spitze zu beeinträchtigen. In einer STM-Studie wird das Selbstorganisations-Verhalten von Oktanthiol und Oktandithiol auf Au(111) aus Ethanol untersucht. Bei geringer relativer Konzentration der Dithiole (1:2000), bildet sich eine Phase liegender Dithiole, deren Ordnung durch die Präsenz der Oktanthiole katalysiert wird. Schließlich wird ein als 'dynamische Tunnelmikroskopie' bezeichneter Modus für die Tunnelmikroskopie in elektrisch leitfähiger Umgebung erfolgreich getestet, der zur Unterdrückung des elektrochemischen Leckstromanteils die Ableitung des Stroms nach dem Abstand als STM-Abstandssignal verwendet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall polymer (SCWP) was recorded by SPR. The optical thicknesses and surface densities for different protein layers were calculated. In DNA hybridization tests performed in order to discriminate different mismatches, recombinant S-layer-streptavidin fusion protein matrices showed their potential for new microarrays. Moreover, SCWPs coated gold chips, covered with a controlled and oriented assembly of S-layer fusion proteins, represent an even more sensitive fluorescence testing platform. Additionally, S-layer fusion proteins as the matrix for LHCII immobilization strongly demonstrate superiority over routine approaches, proving the possibility of utilizing them as a new strategy for biomolecular coupling. In the study of the SPFS hCG immunoassay, the biophysical and immunological characteristics of this glycoprotein hormone were presented first. After the investigation of the effect of the biotin thiol dilution on the coupling efficiently, the interfacial binding model including the appropriate binary SAM structure and the versatile streptavidin-biotin interaction was chosen as the basic supramolecular architecture for the fabrication of a SPFS-based immunoassay. Next, the affinity characteristics between different antibodies and hCG were measured via an equilibrium binding analysis, which is the first example for the titration of such a high affinity interaction by SPFS. The results agree very well with the constants derived from the literature. Finally, a sandwich assay and a competitive assay were selected as templates for SPFS-based hCG detection, and an excellent LOD of 0.15 mIU/ml was attained via the “one step” sandwich method. Such high sensitivity not only fulfills clinical requirements, but is also better than most other biosensors. Fully understanding how LHCII complexes transfer the sunlight energy directionally and efficiently to the reaction center is potentially useful for constructing biomimetic devices as solar cells. After the introduction of the structural and the spectroscopic features of LHCII, different surface immobilization strategies of LHCII were summarized next. Among them the strategy based on the His-tag and the immobilized metal (ion) affinity chromatography (IMAC) technique were of great interest and resulted in different kinds of home-fabricated His-tag chelating chips. Their substantial protein coupling capacity, maintenance of high biological activity and a remarkably repeatable binding ability on the same chip after regeneration was demonstrated. Moreover, different parameters related to the stability of surface coupled reconstituted complexes, including sucrose, detergent, lipid, oligomerization, temperature and circulation rate, were evaluated in order to standardize the most effective immobilization conditions. In addition, partial lipid bilayers obtained from LHCII contained proteo-liposomes fusion on the surface were observed by the QCM technique. Finally, the inter-complex energy transfer between neighboring LHCIIs on a gold protected silver surface by excitation with a blue laser (λ = 473nm) was recorded for the first time, and the factors influencing the energy transfer efficiency were evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoscience aims at manipulating atoms, molecules and nano-size particles in a precise and controlled manner. Nano-scale control of the thin film structures of organic/polymeric materials is a prerequisite to the fabrication of sophisticated functional devices. The work presented in this thesis is a compilation of various polymer thin films with newly synthesized functional polymers. Cationic and anionic LC amphotropic polymers, p-type and n-type semiconducting polymers with triarylamine, oxadiazole, thiadiazole and triazine moieties are suitable materials to fabricate multilayers by layer-by-layer (LBL) self-assembly with a well defined internal structure. The LBL assembly is the ideal processing technique to prepare thin polymer film composites with fine control over morphology and composition at nano-scale thickness, which may have applications in photo-detectors, light-emitting diodes (LEDs), displays and sensors, as well as in solar cells. The multilayer build-up was investigated with amphotropic LC polymers individually by solution-dipping and spin-coating methods; they showed different internal orders with respect to layering and orientation of the mesogens, as a result of the liquid crystalline phase. The synthesized p-type and n-type semiconducting polymers were examined optically and electrochemically, suggesting that they are favorably promising as hole-(p-type) or electron-(n-type) transport materials in electronic and optoelectronic devices. In addition, we report a successful film deposition of polymers by the vacuum deposition method. The vapor deposition method provides a clean environment; it is solvent free and well suited to sequential depositions in hetero-structured multilayer system. As the potential applications, the fabricated polymer thin films were used as simple electrochromic films and also used as hole transporting layers in LEDs. Electrochemical and electrochromic characterizations of assembled films reveal that the newly synthesized polymers give rise to high contrast ratio and fast switching electrochromic films. The LEDs with vacuum deposited films show dramatic improvements in device characteristics, indicating that the films are promising as hole transporting layers. These are the result of not only the thin nano-scale film structures but also the combination with the high charge carrier mobility of synthesized semiconducting polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.