963 resultados para Shimura Varietäten Torelli locus
Resumo:
This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminateplasticloci, where a plastic locus had a finite probability in each generation of functioning (being switched on) or not functioning (being switched off). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation.
Resumo:
Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects. This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance. High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions. The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling. In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.
Resumo:
Mental retardation due to fragile X syndrome is one of the genetic disorders caused by tripler repeat expansion, CGG repeat involved in this disease is known to exhibit polymorphism even among normal individuals. Here we describe the development of suitable probes for detection of polymorphism in CGG repeat at FMR1 locus as well as the diagnosis of fragile X syndrome. Using these methods polymorphism at the FMR1 locus has been examined in 161 individuals. Ninety eight patients with unclassified mental retardation were examined, of whom 7 were found to have the expanded (CGG) allele at the FMR1 locus, The hybridization pattern for two patients has been presented as representative data.
Resumo:
CONTEXT: Polyalanine tract variations in transcription factors have been identified for a wide spectrum of developmental disorders. The thyroid transcription factor forkhead factor E1 (FOXE1) contains a polymorphic polyalanine tract with 12-22 alanines. Single-nucleotide polymorphisms (SNP) close to this locus are associated with papillary thyroid cancer (PTC), and a strong linkage disequilibrium block extends across this region. OBJECTIVE: The objective of the study was to assess whether the FOXE1 polyalanine repeat region was associated with PTC and to assess the effect of polyalanine repeat region variants on protein expression, DNA binding, and transcriptional function on FOXE1-responsive promoters. DESIGN: This was a case-control study. SETTING: The study was conducted at a tertiary referral hospital. PATIENTS AND METHODS: The FOXE1 polyalanine repeat region and tag SNP were genotyped in 70 PTC, with a replication in a further 92 PTC, and compared with genotypes in 5767 healthy controls (including 5667 samples from the Wellcome Trust Case Control Consortium). In vitro studies were performed to examine the protein expression, DNA binding, and transcriptional function for FOXE1 variants of different polyalanine tract lengths. RESULTS: All the genotyped SNP were in tight linkage disequilibrium, including the FOXE1 polyalanine repeat region. We confirmed the strong association of rs1867277 with PTC (overall P = 1 10(-7), odds ratio 1.84, confidence interval 1.31-2.57). rs1867277 was in tight linkage disequilibrium with the FOXE1 polyalanine repeat region (r(2) = 0.95). FOXE1(16Ala) was associated with PTC with an odds ratio of 2.23 (confidence interval 1.42-3.50; P = 0.0005). Functional studies in vitro showed that FOXE1(16Ala) was transcriptionally impaired compared with FOXE1(14Ala), which was not due to differences in protein expression or DNA binding. CONCLUSIONS: We have confirmed the previous association of FOXE1 with PTC. Our data suggest that the coding polyalanine expansion in FOXE1 may be responsible for the observed association between FOXE1 and PTC.
Resumo:
Introduction: Osteoporosis is the commonest metabolic bone disease worldwide. The clinical hallmark of osteoporosis is low trauma fracture, with the most devastating being hip fracture, resulting in significant effects on both morbidity and mortality. Sources of data: Data for this review have been gathered from the published literature and from a range of web resources. Areas of agreement: Genome-wide association studies in the field of osteoporosis have led to the identification of a number of loci associated with both bone mineral density and fracture risk and further increased our understanding of disease. Areas of controversy: The early strategies for mapping osteoporosis disease genes reported only isolated associations, with replication in independent cohorts proving difficult. Neither candidate gene or linkage studies showed association at genome-wide level of significance. Growing points: The advent of massive parallel sequencing technologies has proved extremely successful in mapping monogenic diseases and thus leading to the utilization of this new technology in complex disease genetics. Areas timely for developing research: The identification of novel genes and pathways will potentially lead to the identification of novel therapeutic options for patients with osteoporosis. 2014 The Author.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) =0.05/41,102=1.2210-6. By applying =510-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.6710-6 and 1.5810-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.0810-3) at =0.10/11=9.0910-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.5510-6) at =0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.8710-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. The Author 2015. Published by Oxford University Press. All rights reserved.
Resumo:
Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 10-8) level: 14q24.2 (rs227425, P-value 3.98 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. The Author 2013. Published by Oxford University Press.
Resumo:
The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF </= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Resumo:
The glomerular epithelial cells and their intercellular junctions, termed slit diaphragms, are essential components of the filtration barrier in the kidney glomerulus. Nephrin is a transmembrane adhesion protein of the slit diaphragm and a signalling molecule regulating podocyte physiology. In congenital nephrotic syndrome of the Finnish type, mutation of nephrin leads to disruption of the permeability barrier and leakage of plasma proteins into the urine. This doctoral thesis hypothesises that novel nephrin-associated molecules are involved in the function of the filtration barrier in health and disease. Bioinformatics tools were utilized to identify novel nephrin-like molecules in genomic databases, and their distribution in the kidney and other tissues was investigated. Filtrin, a novel nephrin homologue, is expressed in the glomerular podocytes and, according to immunoelectron microscopy, localizes at the slit diaphragm. Interestingly, the nephrin and filtrin genes, NPHS1 and KIRREL2, locate in a head-to-head orientation on chromosome 19q13.12. Another nephrin-like molecule, Nphs1as was cloned in mouse, however, no expression was detected in the kidney but instead in the brain and lymphoid tissue. Notably, Nphs1as is transcribed from the nephrin locus in an antisense orientation. The glomerular mRNA and protein levels of filtrin were measured in kidney biopsies of patients with proteinuric diseases, and marked reduction of filtrin mRNA levels was detected in the proteinuric samples as compared to controls. In addition, altered distribution of filtrin in injured glomeruli was observed, with the most prominent decrease of the expression in focal segmental glomerulosclerosis. The role of the slit diaphragm-associated genes for the development of diabetic nephropathy was investigated by analysing single nucleotide polymorphisms. The genes encoding filtrin, densin-180, NEPH1, podocin, and alpha-actinin-4 were analysed, and polymorphisms at the alpha-actinin-4 gene were associated with diabetic nephropathy in a gender-dependent manner. Filtrin is a novel podocyte-expressed protein with localization at the slit diaphragm, and the downregulation of filtrin seems to be characteristic for human proteinuric diseases. In the context of the crucial role of nephrin for the glomerular filter, filtrin appears to be a potential candidate molecule for proteinuria. Although not expressed in the kidney, the nephrin antisense Nphs1as may regulate the expression of nephrin in extrarenal tissues. The genetic association analysis suggested that the alpha-actinin-4 gene, encoding an actin-filament cross-linking protein of the podocytes, may contribute to susceptibility for diabetic nephropathy.
Resumo:
Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and land Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. land Island eye disease (AIED), originally described in a family living in land Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel 1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.
Resumo:
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.
Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli.
Resumo:
The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.
Resumo:
Background Multiple sclerosis (MS) is thought to be a T cell-mediated autoimmune disorder. MS pathogenesis is likely due to a genetic predisposition triggered by a variety of environmental factors. Epigenetics, particularly DNA methylation, provide a logical interface for environmental factors to influence the genome. In this study we aim to identify DNA methylation changes associated with MS in CD8+ T cells in 30 relapsing remitting MS patients and 28 healthy blood donors using Illumina 450K methylation arrays. Findings Seventy-nine differentially methylated CpGs were associated with MS. The methylation profile of CD8+ T cells was distinctive from our previously published data on CD4+ T cells in the same cohort. Most notably, there was no major CpG effect at the MS risk gene HLA-DRB1 locus in the CD8+ T cells. Conclusion CD8+ T cells and CD4+ T cells have distinct DNA methylation profiles. This casecontrol study highlights the importance of distinctive cell subtypes when investigating epigenetic changes in MS and other complex diseases.
Resumo:
Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.