963 resultados para Serranid Fishes
Resumo:
Suitable long term species-specific catch rate and biological data are seldom available for large shark species, particularly where historical commercial logbook reporting has been poor. However, shark control programs can provide suitable data from gear that consistently fishes nearshore waters all year round. We present an analysis of the distribution of 4757 . Galeocerdo cuvier caught in surface nets and on drumlines across 9 of the 10 locations of the Queensland Shark Control Program (QSCP) between 1993 and 2010. Standardised catch rates showed a significant decline (p<. 0.0001) in southern Queensland locations for both gear types, which contrasts with studies at other locations where increases in tiger shark catch per unit effort (CPUE) have been reported. Significant temporal declines in the average size of tiger sharks occurred at four of the nine locations analysed (p<. 0.05), which may be indicative of fishing reducing abundance in these areas. Given the long term nature of shark control programs along the Australian east coast, effects on local abundance should have been evident many years ago, which suggests that factors other than the effects of shark control programs have also contributed to the decline. While reductions in catch rate are consistent with a decline in tiger shark abundance, this interpretation should be made with caution, as the inter-annual CPUE varies considerably at most locations. Nevertheless, the overall downward trend, particularly in southern Queensland, indicates that current fishing pressures on the species may be unsustainable. © 2012 Elsevier B.V.
Resumo:
Fisheries managers are becoming increasingly aware of the need to quantify all forms of harvest, including that by recreational fishers. This need has been driven by both a growing recognition of the potential impact that noncommercial fishers can have on exploited resources and the requirement to allocate catch limits between different sectors of the wider fishing community in many jurisdictions. Marine recreational fishers are rarely required to report any of their activity, and some form of survey technique is usually required to estimate levels of recreational catch and effort. In this review, we describe and discuss studies that have attempted to estimate the nature and extent of recreational harvests of marine fishes in New Zealand and Australia over the past 20 years. We compare studies by method to show how circumstances dictate their application and to highlight recent developments that other researchers may find of use. Although there has been some convergence of approach, we suggest that context is an important consideration, and many of the techniques discussed here have been adapted to suit local conditions and to address recognized sources of bias. Much of this experience, along with novel improvements to existing approaches, have been reported only in "gray" literature because of an emphasis on providing estimates for immediate management purposes. This paper brings much of that work together for the first time, and we discuss how others might benefit from our experience.
Resumo:
Proper management of marine fisheries requires an understanding of the spatial and temporal dynamics of marine populations, which can be obtained from genetic data. While numerous fisheries species have been surveyed for spatial genetic patterns, temporally sampled genetic data is not available for many species. We present a phylogeographic survey of the king threadfin Polydactylus macrochir across its species range in northern Australia and at a temporal scale of 1 and 10 yr. Spatially, the overall AMOVA fixation index was Omega(st) = 0.306 (F-st' = 0.838), p < 0.0001 and isolation by distance was strong and significant (r(2) = 0.45, p < 0.001). Temporally, genetic patterns were stable at a time scale of 10 yr. However, this did not hold true for samples from the eastern Gulf of Carpentaria, where populations showed a greater degree of temporal instability and lacked spatial genetic structure. Temporal but not spatial genetic structure in the Gulf indicates demographic interdependence but also indicates that fishing pressure may be high in this area. Generally, genetic patterns were similar to another co-distributed threadfin species Eleutheronema tetradactylum, which is ecologically similar. However, the historical demography of both species, evaluated herein, differed, with populations of P. macrochir being much younger. The data are consistent with an acute population bottleneck at the last glacio-eustatic low in sea level and indicate that the king threadfin may be sensitive to habitat disturbances.
Resumo:
Little is known about the threat of mercury (Hg) to consumers in food webs of Australia's wet-dry tropics. This is despite high concentrations in similar biomes elsewhere and a recent history of gold mining that could lead to a high degree of exposure for biota. We analysed Hg in water, sediments, invertebrates and fishes in rivers and estuaries of north Queensland, Australia to determine its availability and biomagnification in food webs. Concentrations in water and sediments were low relative to other regions of Hg concern, with only four of 138 water samples and five of 60 sediment samples above detection limits of 0.1 mu g L-1 and 01 mu g g(-1), respectively. Concentrations of Hg in fishes and invertebrates from riverine and wetland food webs were well below international consumption guidelines, including those in piscivorous fishes, likely due to low baseline concentrations and limited rates of biomagnification (average slope of log Hg vs. delta N-15 = 0.08). A large fish species of recreational, commercial, and cultural importance (the barramundi, Lates calcarifer), had low concentrations that were below consumption guidelines. Observed variation in Hg concentrations in this species was primarily explained by age and foraging location (floodplain vs. coastal), with floodplain feeders having higher Hg concentrations than those foraging at sea. These analyses suggest that there is a limited threat of Hg exposure for fish-eating consumers in this region. (C) 2011 Published by Elsevier B.V.
Resumo:
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (similar to 2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.
Resumo:
The silver gemfish Rexea solandri is an important economic resource but vulnerable to overfishing in Australian waters. The complete mitochondrial genome sequence is described from 1.6 million reads obtained via next generation sequencing. The total length of the mitogenome is 16,350 bp comprising 2 rRNA, 13 protein-coding genes, 22 tRNA and 2 non-coding regions. The mitogenome sequence was validated against sequences of PCR fragments and BLAST queries of Genbank. Gene order was equivalent to that found in marine fishes.
Resumo:
The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensmy system in.a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
We tested the effect of near-future CO2 levels (a parts per thousand 490, 570, 700, and 960 mu atm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 mu atm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 mu atm CO2 (control). In contrast, juveniles reared at 700 and 960 mu atm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 mu atm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO(2) remains below 600 mu atm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s
Resumo:
MUCH information has been gathered in recent years on the so-called 'antifreeze' proteins which lower the freezing point of the serum of certain marine fishes living in sub-zero water temperatures1−4. The proteins from the Antarctic fish Trematomus borchgrevinki are glycoproteins with a repeating alanyl-alanyl-threonyl tripeptide sequence, the threonyl residue being linked to a disaccharide1,2. In contrast, the antifreeze protein from the winter flounder Pseudopleuronectus americanus in the North American Atlantic coastal region is made up of eight ammo acids with no apparent repeating sequence of the residues and no sugar moiety (ref. 4 and unpublished work of C. L. Hew, C. C. Yip & G. Fletcher). The antifreeze activity of these proteins is not compatible with the known colligative properties of solutes in solution and the mechanism of their action is not yet fully understood. But a common feature of both types of the antifreeze proteins is the preponderance of alanine which accounts for over 60% of the total amino residues. This fact, together with the absence of the carbohydrate in the protein from the winter flounder, prompted us to attempt the synthesis of polypeptide analogues having comparable proportions of alanine in them along with suitable other amino acids. As a first step, we made use of the lack of any obvious periodicity in the distribution of the alanyl residues in the flounder's protein and attempted the synthesis of a random copolypeptide containing about 65 mol % of alanine and 35 mol % of aspartic acid. The choice of aspartic acid was made on the basis of its being the next major amino acid in the flounder's protein3,4 and on the expectation that its polar character will help the water-solubility of the alanine-rich copolypeptide, as in other studies on alanine-containing random copolymers. In addition, Duman and DeVries4 have earlier indicated the involvement of carboxyl groups on the antifreeze activity by chemical modification studies. We report here the synthesis of this polypeptide and show that it possesses antifreeze activity.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.
Resumo:
Kalateollisuus ja kalakauppa tarvitsisivat menetelmän, jolla kalan säilyvyyttä voitaisiin arvioida reaaliaikaisesti ja luotettavasti. Laatuindeksimenetelmä QIM® (engl. Quality Index Method) on käytössä jo useassa Euroopan maassa useille eri kalalajeille. QIM® pyrkii lajikohtaisesti ennustamaan aistinvaraisten ominaisuuksien muutoksien perusteella jäljellä olevaa säilyvyysaikaa. Työn tavoitteena oli luoda QIM® meressä kasvatetulle siialle. Tämä on ensimmäinen suomalaiselle kalalle tehtävä QIM®, ja tavoitteena on saada meressä kasvatetun siian QIM® myös viralliseen QIM®-käsikirjaan. Tutkimus tehtiin Elintarviketurvallisuusvirasto Eviralle. Tutkittavat kalat Evira osti Kalatukku E. Eriksson Oy:ltä. QIM®-tuloksen tueksi tutkittiin yhden erän pH ja indikoitiin pilaantuminen myös mikrobiologisesti. Luotiin myös kasvatetun siian profiili (arvioijia 13). Itse tutkimusosassa kaksi profiiliraatia (n = 9) ja QIM®-raati (n = 5) arvioivat raa’an ja kypsän kalan. Tulos varmistettiin myös aistinvaraisella kalan laadunarviointimenetelmällä (Evira 8001). QIM®-raati loi QIM®-luonnoksen ja luonnoksen toimivuutta testattiin. Kiinteänä osana työn toteutusta oli myös eri vaiheiden muutosten valokuvaus. Tämän tutkimuksen mukaan luotu QIM®-luonnos on toimiva pohja validoitaessaa QIM®-menetelmää siialle. Voidaan myös todeta, että QIM® soveltuu meressä kasvatetulle siialle. Kypsän kalan aistinvaraisella laadunarviointimenetelmällä (Evira 8001) analysoitiin säilytysajankohta, jolloin kypsästä kalasta voitiin todeta kalan kauppakelvottomuus – tätä pidettiin ajanhetkenä, jolloin raa’an kalan tutkiminen voitiin lopettaa. Tutkimuksessa käytetty mikrobiologinen menetelmä ”Mikrobien lukumäärän määrittäminen” (Evira 3420/1) korreloi QIM®-tuloksen kanssa; kalanäyte oli tässä tutkimuksessa niin mikrobiologisesti arvioituna kuin laatuindeksinkin mukaan käyttökelvotonta viidentenätoista päivänä. Tutkittujen kalojen pH-arvoja ei voitu verrata laatuindeksiin, sillä tässä tutkimuksessa mitattujen pH-arvojen tuloksista ei voitu päätellä pilaantumisen etenemistä. Kun QIM® meressä kasvatetulle siialle on validoitu (Evira), valmista meressä kasvatetun siian QI-menetelmää voidaan hyödyntää jatkossa Suomen kalateollisuudessa ja -markkinoilla. Olisi hyvä, jos QIM® luotaisiin myös muille Suomen yleisimmille kauppakaloille, jotta pakkauksiin merkityt viimeiset käyttöpäivät perustuisivat yhteen yhteiseen menetelmään ja näin viimeisellä käyttöpäivällä olisi tieteellinen pohja.
Resumo:
When a habitat undergoes change, the first response of an individual is often behavioural adjustment. This immediate response can determine whether the population will survive or not, as behavioural flexibility gives time for genetic changes to arise later on. Habitat changes that alter reproductive behaviours can have long-lasting effects on populations. If the selective regime has changed under the new conditions, mate choice cues may no longer reliably reflect an individual s quality. Thus, animals have to be able to adjust their reproductive behaviours to the local conditions. The aim of my thesis was to discuss if and how animals are able to respond to rapid anthropogenic environmental change, and to study the mechanisms of the responses and the evolutionary consequences. The main focus was on the effects of human-induced eutrophication on the reproductive behaviour of fishes. Eutrophication is the result of increased nutrient input and can cause dense underwater vegetation and algal blooms. I used fishes from two very different ecosystems as model species, the Baltic Sea threespine stickleback (Gasterosteus aculeatus) and the desert goby (Chlamydogobius eremius), an endemic species of the Lake Eyre region in Central Australia. I investigated the effects of increased habitat complexity on courtship behaviour and the possibility of local differentiation in courtship and nest building behaviour depending on the level eutrophication in the habitat of origin. Furthermore, I observed the effect of turbidity on stickleback nest building behaviour. The results show that threespine stickleback males, which were born in areas that have been eutrophied for decades, court females at a higher intensity than males from clear water areas. Similarly, male desert gobies increased their courtship effort in dense vegetation. Intense courtship could be an adjustment to reduced visibility and lowered predation risk in the densely vegetated sites. However, there were no clear differences in nest building between males from clear and eutrophied areas under standardized conditions. This was expected as Baltic Sea sticklebacks prefer to nest under vegetation cover and are fairly rigid in adjusting their nest characteristics. Nest building was affected by increased turbidity: males built smaller nests with a larger nest entrance in turbid water. The large variation in the magnitude of phytoplankton blooms may require a rapid adjustment of the optimal nest structure to the current conditions. This thesis highlights the complex interactions that are set- off by human-induced changes in habitats and are followed by the immediate behavioural responses. It also encourages more research to tease apart the phenotypic and genetic components of the observed behavioural differences.