956 resultados para Sequence motif analysis
Resumo:
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new species of the genus Henneguya (Henneguya multiplasmodialis n. sp.) was found infecting the gills of three of 89 specimens (3.3%) of Pseudoplatystoma corruscans and two of 79 specimens (2.6%) of Pseudoplatystoma reticulatum from rivers in the Pantanal wetland, Brazil. Partial sequencing of the 18S rDNA gene of the spores obtained from one plasmodium from the gills of P. corruscans and other one from the gills of P. reticulatum, respectively, resulted in a total of 1560 and 1147 base pairs. As the spores of H. multiplasmodialis n. sp. resemble those of Henneguya corruscans, which is also a parasite of P. corruscans, sequencing of the 18S rDNA gene of the spores of H. corruscans found on P. corruscans caught in the Brazilian Pantanal wetland was also provided to avoid any taxonomic pendency between these two species, resulting in 1913 base pairs. The sequences of H. multiplasmodialis n. sp. parasite of P. corruscans and P. reticulatum and H. corruscans did not match any of the Myxozoa available in the GenBank. The similarity of H. multiplasmodialis n. sp. obtained from P. corruscans to that from P. reticulatum was of 99.7%. Phylogeny revealed a strong tendency among Henneguya species to form clades based on the order and/or family of the host fish. H. multiplasmodialis n. sp. clustered in a clade with Henneguya eirasi and H. corruscans, which are also parasites of siluriforms of the family Pimelodidae and, together with the clade composed of Henneguya spp. parasites of siluriforms of the family Ictaluridae, formed a monophyletic clade of parasites of siluriform hosts. The histological study revealed that the wall of the plasmodia of H. multiplasmodialis n. sp. were covered with a stratified epithelium rich in club cells and supported by a layer of connective tissue. The interior of the plasmodia had a network of septa that divided the plasmodia into numerous compartments. The septa were composed of connective tissue also covered on both sides with a stratified epithelium rich in club cells. Inflammatory infiltrate was found in the tissue surrounding the plasmodia as well as in the septa. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Understanding alternative splicing is crucial to elucidate the mechanisms behind several biological phenomena, including diseases. The huge amount of expressed sequences available nowadays represents an opportunity and a challenge to catalog and display alternative splicing events (ASEs). Although several groups have faced this challenge with relative success, we still lack a computational tool that uses a simple and straightforward method to retrieve, name and present ASEs. Here we present SPLOOCE, a portal for the analysis of human splicing variants. SPLOOCE uses a method based on regular expressions for retrieval of ASEs. We propose a simple syntax that is able to capture the complexity of ASEs.
Resumo:
RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.
Resumo:
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.
Resumo:
Context. Lithium abundances in open clusters are a very effective probe of mixing processes, and their study can help us to understand the large depletion of lithium that occurs in the Sun. Owing to its age and metallicity, the open cluster M 67 is especially interesting on this respect. Many studies of lithium abundances in M 67 have been performed, but a homogeneous global analysis of lithium in stars from subsolar masses and extending to the most massive members, has yet to be accomplished for a large sample based on high-quality spectra. Aims. We test our non-standard models, which were calibrated using the Sun with observational data. Methods. We collect literature data to analyze, for the first time in a homogeneous way, the non-local thermal equilibrium lithium abundances of all observed single stars in M 67 more massive than similar to 0.9 M-circle dot. Our grid of evolutionary models is computed assuming a non-standard mixing at metallicity [Fe/H] = 0.01, using the Toulouse-Geneva evolution code. Our analysis starts from the entrance into the zero-age main-sequence. Results. Lithium in M 67 is a tight function of mass for stars more massive than the Sun, apart from a few outliers. A plateau in lithium abundances is observed for turn-off stars. Both less massive (M >= 1.10 M-circle dot) and more massive (M >= 1.28 M-circle dot) stars are more depleted than those in the plateau. There is a significant scatter in lithium abundances for any given mass M <= 1.1 M-circle dot. Conclusions. Our models qualitatively reproduce most of the features described above, although the predicted depletion of lithium is 0.45 dex smaller than observed for masses in the plateau region, i.e. between 1.1 and 1.28 solar masses. More work is clearly needed to accurately reproduce the observations. Despite hints that chromospheric activity and rotation play a role in lithium depletion, no firm conclusion can be drawn with the presently available data.
Resumo:
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Resumo:
Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.
Resumo:
Bananas (Musa spp.) are highly perishable fruit of notable economic and nutritional relevance. Because the identification of proteins involved in metabolic pathways could help to extend green-life and improve the quality of the fruit, this study aimed to compare the proteins of banana pulp at the pre-climacteric and climacteric stages. The use of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed 50 differentially expressed proteins, and comparing those proteins to the Mass Spectrometry Protein Sequence Database (MSDB) identified 26 known proteins. Chitinases were the most abundant types of proteins in unripe bananas, and two isoforms in the ripe fruit have been implicated in the stress/defense response. In this regard, three heat shock proteins and isoflavone reductase were also abundant at the climacteric stage. Concerning fruit quality, pectate lyase, malate dehydrogenase, and starch phosphorylase accumulated during ripening. In addition to the ethylene formation enzyme amino cyclo carboxylic acid oxidase, the accumulation of S-adenosyl-L-homocysteine hydrolase was needed because of the increased ethylene synthesis and DNA methylation that occurred in ripening bananas. Differential analysis provided information on the ripening-associated changes that occurred in proteins involved in banana flavor, texture, defense, synthesis of ethylene, regulation of expression, and protein folding, and this analysis validated previous data on the transcripts during ripening. In this regard, the differential proteomics of fruit pulp enlarged our understanding of the process of banana ripening. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective: To evaluate numerically the facial profile of children with isolated Pierre Robin sequence (PRS) and to compare them with a control group that has no pathologies and exhibits regular and balanced facial growth, with no skeletal alterations. Patients: Eighty-three children aged 5 to 10 years (PRS group, n = 60; control group, n = 23) were selected. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo (HRAC-USP). Children from the control group were taken from the program of Interceptive Orthodontics at HRAC-USP. Design: Angular and ratio analyses of the facial profiles in both groups were realized through digital photographs. The PRS group was subdivided into two groups-complete and incomplete-according to the sagittal extension of the cleft palate, to investigate the possible influence of cleft extension on the face. Results: The facial convexity angle and the facial inferior third angle were considerably higher in the PRS groups than in the control group and were not significantly different between PRS groups. Nasolabial angle did not differ between groups. Conclusion: The facial profile was more convex in individuals with PRS than in those with regular facial growth and with no pathology. The mandible was responsible for the convexity of the profile in PRS because of its lack off anterior projection. An important relationship between the extension of the cleft palate and alterations in facial profile in PRS was not observed.
Resumo:
We studied the presence of primary resistance to raltegravir (RAL), natural polymorphisms, and selection pressure on HIV-1 integrase. We found a high frequency of integrase polymorphisms related to the resistance to RAL and sequence stability. Further studies are needed to determine the importance of these polymorphisms to RAL resistance.
Resumo:
We have cloned and characterized for the first time an allograft inflammatory factor 1 (Sn-AIF-1) from the Antarctic sea urchin. We report the cloning of Sn-AIF-1 cDNA and the characterization of its expression in coelomocytes after a bacterial challenge. The cDNA Sn-AIF-1 has a size of 608 bp and encodes a polypeptide of 151 aa. The deduced amino acid sequence has a putative size of 17.430 Da, an isoelectric point of 4.92, and shows 2 elongation factor handlike motifs that normally bind calcium ions. BLAST analysis revealed close matches with other known AIF-1. The deduced amino acid sequence of Sn-AIF-1 showed high homology with AIF-1 in vertebrates such as fish, mice, and humans; and in the case of invertebrates, the major degree of identity (55%) was with a predicted sequence of the purple sea urchin AIF-1, and 52% corresponded to a sponge. Expression of Sn-AIF-1 mRNA was analyzed by qPCR. Sn-AIF-1 mRNA expression was measured from coelomocytes after a bacterial challenge using RT-PCR and revealed that the gene was upregulated after 24 h. Sn-AIF-1 could participate in the inflammatory response, particularly in the activation of coelomocytes and their survival.
Resumo:
Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.
Resumo:
The objective was to determine the effect of sequence of insemination after simultaneous thawing of multiple 0.5 mL semen straws on conception rate in suckled multiparous Nelore cows. The effect of this thawing procedure on in vitro sperm characteristics was also evaluated. All cows (N = 944) received the same timed AI protocol. Ten straws (0.5 mL) of frozen semen from the same batch were simultaneously thawed at 36 degrees C, for a minimum of 30 sec. One straw per cow was used for timed AI. Frozen semen from three Angus bulls was used. Timed AI records included sequence of insemination (first to tenth) and time of semen removal from thawing bath. For laboratory analyses, the same semen batches used in the field experiment were evaluated. Ten frozen straws from the same batch were thawed simultaneously in a thawing unit identical to that used in the field experiment. The following sperm characteristics were analyzed: sperm motility parameters, sperm thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, chromatin structure, and sperm morphometry. Based on logistic regression, there were no significant effects of breeding group, body condition score, AI technician, and sire on conception rate, but there was an interaction between sire and straw group (P = 0.002). Semen from only one bull had decreased (P < 0.05) field fertility for the group of straws associated with the longest interval from thawing to AI. However, the results of the laboratory experiment were unable to explain the findings of the field experiment. Sperm width:length ratio of morphometric analysis was the single sperm characteristic with a significant interaction between sire and straw group (P = 0.02). It was concluded that sequence of insemination after simultaneous thawing of 10 semen straws can differently affect conception rates at timed AI, depending on the sire used. Nevertheless, the effects of this thawing environment on in vitro sperm characteristics, remain to be further investigated. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 or 2 mu M) for 1 h and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that, while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution, as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation.