948 resultados para SWITCH
Resumo:
The effect of elevated pCO(2)/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567A degrees N, 4.1277A degrees W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (a"broken vertical bar(calc) = 0.78, a"broken vertical bar(ara) = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO(2) can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO(2)-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
Resumo:
Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min 21) from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m) boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS) during foraging, but only 42% of ARS were associated with fishing vessels, indicating much 'natural' foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81%) than females (30%), although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on 'natural' foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy.
Resumo:
Marine diatoms and dinoflagellates play a variety of key ecosystem roles as important primary producers (diatoms and some dinoflagellates) and grazers (some dinoflagellates). Additionally some are harmful algal bloom (HAB) species and there is widespread concern that HAB species may be increasing accompanied by major negative socio-economic impacts, including threats to human health and marine harvesting1, 2. Using 92,263 samples from the Continuous Plankton Recorder survey, we generated a 50-year (1960–2009) time series of diatom and dinoflagellate occurrence in the northeast Atlantic and North Sea. Dinoflagellates, including both HAB taxa (for example, Prorocentrum spp.) and non-HAB taxa (for example, Ceratium furca), have declined in abundance, particularly since 2006. In contrast, diatom abundance has not shown this decline with some common diatoms, including both HAB (for example, Pseudo-nitzschia spp.) and non-HAB (for example, Thalassiosira spp.) taxa, increasing in abundance. Overall these changes have led to a marked increase in the relative abundance of diatoms versus dinoflagellates. Our analyses, including Granger tests to identify criteria of causality, indicate that this switch is driven by an interaction effect of both increasing sea surface temperatures combined with increasingly windy conditions in summer.
Resumo:
The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are influenced by many other factors, such as nutrient enrichment and overfishing, every region has shown at least some changes that were most likely attributable to recent climate change. It is expected that within open systems there will generally be (further) northward movement of species, leading to a switch from polar to more temperate species in the northern seas such as the Arctic, Barents Sea and the Nordic Seas, and subtropical species moving northward to temperate regions such as the Iberian upwelling margin. For seas that are highly influenced by river runoff, such as the Baltic Sea, an increase in freshwater due to enhanced rainfall will lead to a shift from marine to more brackish and even freshwater species. If semi-enclosed systems such as the Mediterranean and the Black Sea lose their endemic species, the associated niches will probably be filled by species originating from adjacent waters and, possibly, with species transported from one region to another via ballast water and the Suez Canal. A better understanding of potential climate change impacts (scenarios) at both regional and local levels, the development of improved methods to quantify the uncertainty of climate change projections, the construction of usable climate change indicators, and an improvement of the interface between science and policy formulation in terms of risk assessment will be essential to formulate and inform better adaptive strategies to address the inevitable consequences of climate change.
Resumo:
Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.
Resumo:
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.
Resumo:
Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.
Resumo:
Changes in the net heat flux (NHF) into the ocean have profound impacts on global climate. We analyse a long-term plankton time-series and show that the NHF is a critical indicator of ecosystem dynamics. We show that phytoplankton abundance and diversity patterns are tightly bounded by the switches between negative and positive NHF over an annual cycle. Zooplankton increase before the transition to positive NHF in the spring but are constrained by the negative NHF switch in autumn. By contrast bacterial diversity is decoupled from either NHF switch, but is inversely correlated (r=-0.920) with the magnitude of the NHF. We show that the NHF is a robust mechanistic tool for predicting climate change indicators such as spring phytoplankton bloom timing and length of the growing season.
Resumo:
Previous work has shown that thrombin activatable fibrinolysis inhibitor (TAFI) was unable to prolong lysis of purified clots in the presence of Lys-plasminogen (Lys-Pg), indicating a possible mechanism for fibrinolysis to circumvent prolongation mediated by activated TAFI (TAFIa). Therefore, the effects of TAFIa on Lys-Pg activation and Lys-plasmin (Lys-Pn) inhibition by antiplasmin (AP) were quantitatively investigated using a fluorescently labeled recombinant Pg mutant which does not produce active Pn. High molecular weight fibrin degradation products (HMW-FDPs), a soluble fibrin surrogate that models Pn modified fibrin, treated with TAFIa decreased the catalytic efficiency (kcat/Km) of 5IAF-Glu-Pg cleavage by 417-fold and of 5IAF-Lys-Pg cleavage by 55-fold. A previously devised intact clot system was used to measure the apparent second order rate constant (k2) for Pn inhibition by AP over time. While TAFIa was able to abolish the protection associated with Pn modified fibrin in clots formed with Glu-Pg, it was not able to abolish the protection in clots formed with Lys-Pg. However, TAFIa was still able to prolong the lysis of clots formed with Lys-Pg. TAFIa prolongs clot lysis by removing the positive feedback loop for Pn generation. The effect of TAFIa modification of the HMW-FDPs on the rate of tissue type plasminogen activator (tPA) inhibition by plasminogen activator inhibitor type 1 (PAI-1) was investigated using a previously devised end point assay. HMW-FDPs decreased the k2 for tPA inhibition rate by 3-fold. Thus, HMW-FDPs protect tPA from PAI-1. TAFIa treatment of the HMW-FDPs resulted in no change in protection. Vitronectin also did not appreciably affect tPA inhibition by PAI-1. Pg, in conjunction with HMW-FDPs, decreased the k2 for tPA inhibition by 30-fold. Hence, Pg, when bound to HMW-FDPs, protects tPA by an additional 10-fold. TAFIa treatment of the HMW-FDPs completely removed this additional protection provided by Pg. In conclusion, an additional mechanism was identified whereby TAFIa can prolong clot lysis by increasing the rate of tPA inhibition by PAI-1 by eliminating the protective effects of Pn-modified fibrin and Pg. Because TAFIa can suppress Lys-Pg activation but cannot attenuate Lys-Pn inhibition by AP, the Glu- to Lys-Pg/Pn conversion is able to act as a fibrinolytic switch to ultimately lyse the clot.
Resumo:
Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca2+-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca2+-activated (ICl(Ca)) and volume-regulated (ICl, swell) chloride currents. NPPB and DIDS more efficiently inhibited ICl(Ca) and ICl, swell, respectively. Cell swelling caused by hypotonic solution invariably activated ICl, swell while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling–induced ICl, swell, while its inactive analogue U-73343 had no effect. ICl(Ca) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, ICl, swell could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced ICl, swell in a nonadditive manner, suggesting their convergence on a common pathway. ICl, swell and ICl(Ca) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated ICl(Ca), but abolished ICl, swell, thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that ICl, swell can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a "selection" switch between closely localized channels.
Resumo:
Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.
Resumo:
In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.
Resumo:
Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius. (C) 2004 American Institute of Physics.
Resumo:
A novel power-efficient systolic array architecture is proposed for full search block matching (FSBM) motion estimation, where the partial distortion elimination algorithm is used to dynamically switch off the computation of eliminated partial candidate blocks. The RTL-level simulation shows that the proposed architecture can reduce the power consumption of the computation part of the algorithm to about 60% of that of the conventional 2D systolic arrays.
Resumo:
Closed-form design equations for the operation of a class-E amplifier for zero switch voltage slope and arbitrary duty cycle are derived. This approach allows an additional degree of freedom in the design of class-E amplifiers which are normally designed for 50 duty ratio. The analysis developed permits the selection of non-unique solutions where amplifier efficiency is theoretically 100 but power output capability is less than that the 50 duty ratio case would permit. To facilitate comparison between 50 (optimal) and non-50 (suboptimal) duty ratio cases, each important amplifier parameter is normalised to its corresponding optimum operation value. It is shown that by choosing a non-50 suboptimal solution, the operating frequency of a class-E amplifier can be extended. In addition, it is shown that by operating the amplifier in the suboptimal regime, other amplifier parameters, for example, transistor output capacitance or peak switch voltage, can be included along with the standard specification criteria of output power, DC supply voltage and operating frequency as additional input design specifications. Suboptimum class-E operation may have potential advantages for monolithic microwave integrated circuit realisation as lower inductance values (lower series resistance, higher self-resonance frequency, less area) may be required when compared with the results obtained for optimal class-E amplifier synthesis. The theoretical analysis conducted here was verified by harmonic balance simulation, with excellent agreement between both methods. © The Institution of Engineering and Technology 2007.