985 resultados para SEIZURE ACTIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A typical feature of type II restriction endonucleases (REases) is their obligate sequence specificity and requirement for Mg2+ during catalysis. R.KpnI is an exception. Unlike most other type II REases, the active site of this enzyme can accommodate Mg2+, Mn2+, Ca2+, or Zn2+ and cleave DNA. The enzyme belongs to the HNH superfamily of nucleases and is characterized by the presence of a beta beta alpha-Me finger motif. Residues D148, H149, and Q175 together form the HNH active site and are essential for Mg2+ binding and catalysis. The unique ability of the enzyme to cleave DNA in the presence of different metal ions is exploited to generate mutants that are specific to one particular metal ion. We describe the generation of a Mn2+-dependent sequence specific endonuclease, defective in DNA cleavage with Mg2+ and other divalent metal ions. In the engineered mutant, only Mn2+ is selectively bound at the active site, imparting Mn2+-mediated cleavage. The mutant is impaired in concerted double-stranded DNA cleavage, leading to accumulation of nicked intermediates. The nicking activity of the mutant enzyme is further enhanced by altered reaction conditions. The active site fluidity of R Eases allowing flexible accommodation of catalytic cofactors thus forms a basis for engineering selective metal ion-dependent REase additionally possessing nicking activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence suggest that cancer progression is associated with up-regulation or reactivation of telomerase and the underlying mechanism remains an active area of research. The heterotrimeric MRN complex, consisting of Mre11, Rad50 and Nbs1, which is required for the repair of double-strand breaks, plays a key role in telomere length maintenance. In this study, we show significant differences in the levels of expression of MRN complex subunits among various cancer cells and somatic cells. Notably, siRNA-mediated depletion of any of the subunits of MRN complex led to complete ablation of other subunits of the complex. Treatment of leukemia and prostate cancer cells with etoposide lead to increased expression of MRN complex subunits, with concomitant decrease in the levels of telomerase activity, compared to breast cancer cells. These studies raise the possibility of developing anti-cancer drugs targeting MRN complex subunits to sensitize a subset of cancer cells to radio- and/or chemotherapy. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes Cu(ph-tpy)(B)](ClO4) (1-3), where ph-tpy is (4'-phenyl)-2,2':6',2 `'-terpyridine and B is N,N-donor phenanthroline base, viz. 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and characterized from analytical and spectral data. Complex 1, characterized by X-ray crystallography, shows a distorted square-pyramidal (4 + 1) CuN5 coordination geometry having the tridentate ph-tpy ligand at the basal plane and bidentate phen bound to the axial-equatorial sites. The complexes display a d-d band near 650 nm in aqueous DMF. The complexes are avid binders to calf thymus DNA giving the binding order: 3 (dppz) > 2 (dpq) > 1 (phen). The dpq and dppz complexes show photo-induced DNA cleavage activity in red light via photo-redox pathway forming hydroxyl radicals. The cytotoxicity of the dppz complex 3 was studied by MTT assay in HeLa cancer cells. The IC50 values are 3.7 and 12.4 mu M in visible light of 400-700 nm and dark, respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of FSH to stimulate the activity of ornithine decarboxylase (ODC) in the ovary of the immature rat and cycling hamster has been examined using specific antisera to gonadotropins. The stimulatory effect of FSH on ODC activity in the ovary of the immature rat was abolished when LH antiserum was administered along with FSH, while similar administration of FSH antiserum had no effect on LH action in stimulating ODC activity, thereby demonstrating the specificity of the LH effect. During the estrus cycle of the hamster, ODC activity in the ovary could be detected only on the evening of proestrus, the maximal activity seen at 1700 h being associated with both the Graafian follicles and the rest of the ovarian tissue. Neutralization of the proestrous FSH surge had no effect on the activity of ODC in either of these tissues, while similar administration of LH antiserum at 1300 h of proestrus completely inhibited the ODC activity in both large follicles and the rest of the ovarian tissue. Thus, the surge of LH, but not of FSH, appears to be responsible for regulating the ODC activity in the ovary of the cycling hamster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino) phenol and B is 1,10-phenanthroline (phen for 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq for 2) or dipyrido3,2-a:2',3'-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within -1.1 to -1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 x 10(4) to 1.2 x 10(5) M (1). The complexes do not show any ``chemical nuclease'' activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via O-1(2) pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO* pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 mu M, while it is less toxic in dark (IC50 = 97 mu M). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective : The main objective of this work was to study the antipyretic and antibacterial activity of C. erectus (Buch.-Ham.) Verdcourt leaf extract in an experimental albino rat model. Materials and Methods : The methanol extract of C. erectus leaf (MECEL) was evaluated for its antipyretic potential on normal body temperature and Brewers yeast-induced pyrexia in albino rats model. While the antibacterial activity of MECEL against five Gram (-) and three Gram () bacterial strains and antimycotic activity was investigated against four fungi using agar disk diffusion and microdilution methods. Result : Yeast suspension (10 mL/kg b.w.) elevated rectal temperature after 19 h of subcutaneous injection. Oral administration of MECEL at 100 and 200 mg/kg b.w. showed significant reduction of normal rectal body temperature and yeast-provoked elevated temperature (38.8 0.2 and 37.6 0.4, respectively, at 2-3 h) in a dose-dependent manner, and the effect was comparable to that of the standard antipyretic drug-paracetamol (150 mg/kg b.w.). MECEL at 2 mg/disk showed broad spectrum of growth inhibition activity against both groups of bacteria. However, MECEL was not effective against the yeast strains tested in this study. Conclusion : This study revealed that the methanol extract of C. erectus exhibited significant antipyretic activity in the tested models and antibacterial activity as well, and may provide the scientific rationale for its popular use as antipyretic agent in Khamptiss folk medicines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 (anatase) was synthesized using a microwave-irradiation-assisted chemical method. The reaction conditions were varied to obtain unique nanostructures of TiO2 comprising nanometric spheres giving the materials a very porous morphology. The oxide was characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The specific surface area and porosity were quantified by the BET method, and the degradation of dyes was carried out using these materials. The photocatalytic activity of the nanometric TiO2 was significantly higher than that of commercially available TiO2 (Degussa P25) for the degradation of the dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATR Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5 ',5 '''-P-1,P-4-tetraphosphate (AP(4)A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap(4)A bound to the active site pocket suggesting the presence of Ap(4)A synthetic activity in TdcD. Binding of Ap(4)A to the enzyme was confirmed by the structure determination of a TdcD-Ap(4)A complex obtained after cocrystallization of TdcD with commercially available Ap(4)A. Mass spectroscopic studies provided further evidence for the formation of Ap(4)A by propionate kinase in the presence of ATP. In the TdcD-Ap(4)A complex structure, Ap(4)A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented here has focused on the role of cation-chloride cotransporters (CCCs) in (1) the regulation of intracellular chloride concentration within postsynaptic neurons and (2) on the consequent effects on the actions of the neurotransmitter gamma-aminobutyric acid (GABA) mediated by GABAA receptors (GABAARs) during development and in pathophysiological conditions such as epilepsy. In addition, (3) we found that a member of the CCC family, the K-Cl cotransporter isoform 2 (KCC2), has a structural role in the development of dendritic spines during the differentiation of pyramidal neurons. Despite the large number of publications dedicated to regulation of intracellular Cl-, our understanding of the underlying mechanisms is not complete. Experiments on GABA actions under resting steady-state have shown that the effect of GABA shifts from depolarizing to hyperpolarizing during maturation of cortical neurons. However, it remains unclear, whether conclusions from these steady-state measurements can be extrapolated to the highly dynamic situation within an intact and active neuronal network. Indeed, GABAergic signaling in active neuronal networks results in a continuous Cl- load, which must be constantly removed by efficient Cl- extrusion mechanisms. Therefore, it seems plausible to suggest that key parameters are the efficacy and subcellular distribution of Cl- transporters rather than the polarity of steady-state GABA actions. A further related question is: what are the mechanisms of Cl- regulation and homeostasis during pathophysiological conditions such as epilepsy in adults and neonates? Here I present results that were obtained by means of a newly developed method of measurements of the efficacy of a K-Cl cotransport. In Study I, the developmental profile of KCC2 functionality during development was analyzed both in dissociated neuronal cultures and in acute hippocampal slices. A novel method of photolysis of caged GABA in combination with Cl- loading to the somata was used in this study to assess the extrusion efficacy of KCC2. We demonstrated that these two preparations exhibit a different temporal profile of functional KCC2 upregulation. In Study II, we reported an observation of highly distorted dendritic spines in neurons cultured from KCC2-/- embryos. During their development in the culture dish, KCC2-lacking neurons failed to develop mature, mushroom-shaped dendritic spines but instead maintained an immature phenotype of long, branching and extremely motile protrusions. It was shown that the role of KCC2 in spine maturation is not based on its transport activity, but is mediated by interactions with cytoskeletal proteins. Another important player in Cl- regulation, NKCC1 and its role in the induction and maintenance of native Cl- gradients between the axon initial segment (AIS) and soma was the subject of Study III. There we demonstrated that this transporter mediates accumulation of Cl- in the axon initial segment of neocortical and hippocampal principal neurons. The results suggest that the reversal potential of the GABAA response triggered by distinct populations of interneurons show large subcellular variations. Finally, a novel mechanism of fast post-translational upregulation of the membrane-inserted, functionally active KCC2 pool during in-vivo neonatal seizures and epileptiform-like activity in vitro was identified and characterized in Study IV. The seizure-induced KCC2 upregulation may act as an intrinsic antiepileptogenic mechanism.