981 resultados para Robinson, Remus, 1904-1970
Resumo:
Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.
Telenomus remus Nixon Egg Parasitization of Three Species of Spodoptera Under Different Temperatures
Resumo:
Telenomus remus Nixon is a promising biocontrol agent as an egg parasitoid of Spodoptera spp., but the lack of information on the host-parasitoid interactions in this system precludes its applied use in agriculture. Therefore, we studied the parasitism capacity of T. remus on eggs of Spodoptera cosmioides (Walker), Spodoptera eridania (Cramer), and Spodoptera frugiperda (Smith) in a range of temperatures (19, 22, 25, 28, 31, and 34 ± 1°C) under controlled conditions (70 ± 10% RH and 12 h photophase). Egg masses of Spodoptera spp. were offered to a single-mated T. remus female on a daily basis. More than 80% lifetime parasitism on eggs of S. cosmioides, S. frugiperda, and S. eridania was reached from 1 to 5, 1 to 7, and 1 to 9 days, respectively, at temperatures from 19 to 34°C. More than 80% parasitization was obtained at extreme temperatures for all hosts studied. Lifetime parasitization of S. frugiperda, S. cosmioides, and S. eridania was affected by temperature, with the lowest values for S. frugiperda (34°C) and S. cosmioides (19 and 34°C). Parasitization of S. eridania eggs was reduced around 18% at 28 and 31°C, but dropped more severely at 34°C. Parasitoid longevity was reduced as temperature increased. Thus, our data indicated that T. remus might be suitable as a biocontrol agent against S. eridania, S. cosmioides, and S. frugiperda in geographical areas that fit the temperature range studied here, even though T. remus parasitism was reduced at 34°C. © 2013 Sociedade Entomológica do Brasil.
Resumo:
Incluye Bibliografía
Resumo:
Pós-graduação em Artes - IA
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía