950 resultados para Refined nonlinear non-conforming triangular plate element
Resumo:
The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.
Resumo:
Wydział Nauk Politycznych i Dziennikarstwa
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
Wingtip vortices are created by flying airplanes due to lift generation. The vortex interaction with the trailing aircraft has sparked researchers’ interest to develop an efficient technique to destroy these vortices. Different models have been used to describe the vortex dynamics and they all show that, under real flight conditions, the most unstable modes produce a very weak amplification. Another linear instability mechanism that can produce high energy gains in short times is due to the non-normality of the system. Recently, it has been shown that these non-normal perturbations also produce this energy growth when they are excited with harmonic forcing functions. In this study, we analyze numerically the nonlinear evolution of a spatially, pointwise and temporally forced perturbation, generated by a synthetic jet at a given radial distance from the vortex core. This type of perturbation is able to produce high energy gains in the perturbed base flow (10^3), and is also a suitable candidate for use in engineering applications. The flow field is solved for using fully nonlinear three-dimensional direct numerical simulation with a spectral multidomain penalty method model. Our novel results show that the nonlinear effects are able to produce locally small bursts of instability that reduce the intensity of the primary vortex.
Resumo:
The South Florida Water Management District (SFWMD) is responsible for managing over 2500 miles of waterways and hundreds of water control structures. Many of these control structures are experiencing erosion, known as scour, of the sediment downstream of the structure. Laboratory experiments were conducted in order to investigate the effectiveness of two-dimensional air diffusers and plate extensions (without air injection) on a 1/30 scale model of one of SFWMD gated spillway structures, the S65E gated spillway. A literature review examining the results of similar studies was conducted. The experimental design for this research was based off of previous work done on the same model. Scour of the riverbed downstream of gated spillway structures has the potential to cause serious damage, as it can expose the foundation of the structure, which can lead to collapse. This type of scour has been studied previously, but it continues to pose a risk to water control structures and needs to be studied further. The hydraulic scour channel used to conduct experiments contains a head tank, flow straighteners, gated spillway, stilling basin, scour chamber, sediment trap, and tailwater tank. Experiments were performed with two types of air diffusers. The first was a hollow, acrylic, triangular end sill with air injection holes on the upstream face, allowing for air injection upstream. The second diffuser was a hollow, acrylic rectangle that extended from the triangular end sill with air injection holes in the top face, allowing for vertical air injection, perpendicular to flow. Detailed flow and bed measurements were taken for six trials for each diffuser ranging from no air injection to 5 rows of 70 holes of 0.04" diameter. It was found that with both diffusers, the maximum amount of air injection reduced scour the most. Detailed velocity measurements were taken for each case and turbulence statistics were analyzed to determine why air injection reduces scour. It was determined that air injection reduces streamwise velocity and turbulence. Another set of experiments was performed using an acrylic extension plate with no air injection to minimize energy costs. Ten different plate lengths were tested. It was found that the location of deepest scour moved further downstream with each plate length. The 32-cm plate is recommended here. Detailed velocity measurements were taken after the cases with the 32-cm plate and no plate had reached equilibrium. This was done to better understand the flow patterns in order to determine what causes the scour reduction with the extension plates. The extension plate reduces the volume of scour, but more importantly translates the deepest point of scour downstream from the structure, lessening the risk of damage.
Resumo:
By using near infrared spectroscopy (NIRS) and by modifying the current Somanetics® optodes being used with the INVOS oximeter, the modified optodes are made to be fairly functional not only across the forehead, but across the hairy regions of the scalp as well. A major problem arises in the positioning of these optodes on the patients scalp and holding them in place while recording data. Another problem arises in the inconsistent repeatability of the trends displayed in the recorded data. A method was developed to facilitate the easy placement of these optodes on the patients scalp keeping in mind thepatient's comfort. The sensitivity of the optodes, too, was improved by incorporating better refined techniques for manufacturing the fiber optic brushes and fixing the same to the optode transmitting and receiving windows. The modified and improved optodes, in the single as well as in the multiplexed modes, were subjected to various tests on different areas of the brain to determine their efficiency and functionality.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.
Resumo:
Avec la disponibilité de capteurs fiables de teneur en eau exploitant la spectroscopie proche infrarouge (NIR pour near-infrared) et les outils chimiométriques, il est maintenant possible d’appliquer des stratégies de commande en ligne sur plusieurs procédés de séchage dans l’industrie pharmaceutique. Dans cet ouvrage, le séchage de granules pharmaceutiques avec un séchoir à lit fluidisé discontinu (FBD pour fluidized bed dryer) de taille pilote est étudié à l’aide d’un capteur d’humidité spectroscopique. Des modifications électriques sont d’abord effectuées sur le séchoir instrumenté afin d’acheminer les signaux mesurés et manipulés à un périphérique d’acquisition. La conception d’une interface homme-machine permet ensuite de contrôler directement le séchoir à l’aide d’un ordinateur portable. Par la suite, un algorithme de commande prédictive (NMPC pour nonlinear model predictive control), basée sur un modèle phénoménologique consolidé du FBD, est exécuté en boucle sur ce même ordinateur. L’objectif est d’atteindre une consigne précise de teneur en eau en fin de séchage tout en contraignant la température des particules ainsi qu’en diminuant le temps de lot. De plus, la consommation énergétique du FBD est explicitement incluse dans la fonction objectif du NMPC. En comparant à une technique d’opération typique en industrie (principalement en boucle ouverte), il est démontré que le temps de séchage et la consommation énergétique peuvent être efficacement gérés sur le procédé pilote tout en limitant plusieurs problèmes d’opération comme le sous-séchage, le surséchage ou le surchauffage des granules.
Resumo:
The Canadian Dental Hygienists Association (CDHA) has indicated that there is a need for research in education in the field of dental hygiene. It seems that when compared to the nursing profession, the profession of dental hygiene is only in the earliest stages of investigating ways of teaching critical thinking. The faculty of the dental hygiene program at John Abbott College has always valued the skill of self-assessment in the students, yet there are few specific learning activities provided whereby the students can learn how to perfect and work on this invaluable skill of self-reflection in order to better self-assess. Although self-assessment is required of the students upon the completion of each clinical experience in Clinic 1, 2 and 3, a modest amount of clinical time is allotted to reflect upon this most important skill. It appears that more could be done to prepare our students to assess their learning and clinical practice. Self-reflection as an essential element of practice has a valid place in professional education. The purpose of conducting this study was to find out whether unstructured or structured self-reflective journal writing is a sound pedagogical technique to encourage dental hygiene students’ self-assessment through self-reflection. The research design for the project was a single case study. The paradigm for the study was chosen with a purposeful selection of participants, involving twenty-seven, third-year dental hygiene students at John Abbott College. The students were arbitrarily enrolled in two sections, which for the purpose of this study were referred to as Group A and Group B. Three duplicated coded anonymous journal entries from each student were collected over a ten-week period during the Fall 2009 semester. To examine the students’ level of self-reflection, two methods were used. First a content analysis of reflective journals was used to ascertain the level and substance of the reflections from their clinical experiences with the intent of looking more specifically at the students’ self-assessment. The journal entries were coded and analyzed after the grades were submitted at the end of the school term. This was followed by the distribution of an anonymous questionnaire to the students in both sections. The responses of the questionnaire were tabulated and analyzed. An analysis was done on the data collected in order to determine whether age, education and or mother tongue of the students in both Groups A and B had an influence on their perceptions of journal writing, as well as the student’s opinions about the value of journal writing. This questionnaire included two open-ended questions to assist in gathering additional data on the student’s thoughts on writing journals. A content analysis of the qualitative data collected from the open-ended questions in the questionnaire was also analyzed. Results indicated there were very few differences in the level of self-reflection leading to self-assessment. However, students in Group B who were assigned structured journals showed more evidence of deeper learning. Taken as a whole, the journal entries clearly showed the students were involved in ‘reflection-on-action’ of their clinical experiences (Schon 1987, as cited in Asadoorian & Batty, 2005). The quality of the responses for the most part indicated the students took the time and effort to record their perceptions of their clinical experiences. It is important to note that the results do indicate that students did show a need to self-reflect and assess. The students did in fact validate the importance of reflection through journal writing, even though they did not particularly like it as an added assignment. The journals were found to be very helpful to the research in getting to know what the issues were that held the students’ attention. They explained how and to what extent the students developed relationships with their clients. It was obvious that clinicians have an impact and influence on student learning. The students value the help, role modeling, patience, encouraging words and or gestures, positive reinforcement, and understanding provided by their clinicians. This research provides some evidence that students do believe that self-reflection through structured journal writing helped them better prepare for future clinical sessions with their clients. Our goal as educators should be to encourage dental hygiene students to self-assess through written self-reflection as an established practice for deeper learning.
Resumo:
With the theme of fracture of finite-strain plates and shells based on a phase-field model of crack regularization, we introduce a new staggered algorithm for elastic and elasto-plastic materials. To account for correct fracture behavior in bending, two independent phase-fields are used, corresponding to the lower and upper faces of the shell. This is shown to provide a realistic behavior in bending-dominated problems, here illustrated in classical beam and plate problems. Finite strain behavior for both elastic and elasto-plastic constitutive laws is made compatible with the phase-field model by use of a consistent updated-Lagrangian algorithm. To guarantee sufficient resolution in the definition of the crack paths, a local remeshing algorithm based on the phase- field values at the lower and upper shell faces is introduced. In this local remeshing algorithm, two stages are used: edge-based element subdivision and node repositioning. Five representative numerical examples are shown, consisting of a bi-clamped beam, two versions of a square plate, the Keesecker pressurized cylinder problem, the Hexcan problem and the Muscat-Fenech and Atkins plate. All problems were successfully solved and the proposed solution was found to be robust and efficient.
Resumo:
We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.
Resumo:
In this study, a finite element (FE) framework for the analysis of the interplay between buckling and delamination of thin layers bonded to soft substrates is proposed. The current framework incorporates the following modeling features: (i) geometrically nonlinear solid shell elements, (ii) geometrically nonlinear cohesive interface elements, and (iii) hyperelastic material constitutive response for the bodies that compose the system. A fully implicit Newton–Raphson solution strategy is adopted to deal with the complex simultaneous presence of geometrical and material nonlinearities through the derivation of the consistent FE formulation. Applications to a rubber-like bi-material system under finite bending and to patterned stiff islands resting on soft substrate for stretchable solar cells subjected to tensile loading are proposed. The results obtained are in good agreement with benchmark results available in the literature, confirming the accuracy and the capabilities of the proposed numerical method for the analysis of complex three-dimensional fracture mechanics problems under finite deformations.