906 resultados para Radial-Inflow Turbines
Resumo:
An elasticity solution has been obtained for a long circular sandwich cylindrical shell subjected to axisymmetric radial ring load using Love's stress function approach. Numerical results are presented for different ratios of modulus of elasticity of the layers. The results obtained from this analysis have been compared with those obtained from sandwich shell theory due to Fulton.
Resumo:
Isothermal-isobaric ensemble Monte Carlo simulation studies of adamantane have been carried out at different temperatures. Thermodynamic properties and radial distribution functions calculated by employing a simple potential model based on sitesite interactions show good agreement with experiment and suggest that the solid is orientationally disordered at high temperatures.
Resumo:
Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Resumo:
The hydrodynamical problem of flow in proximal renal tubule is investigated by considering axisymmetric flow of a viscous, incompressible fluid through a long narrow tube of varying cross-section with reabsorption at the wall. Two cases for reabsorption have been studied (i) when the bulk flow,Q, decays exponentially with the axial distancex, and (ii) whenQ is an arbitrary function ofx such thatQ-Q 0 can be expressed as a Fourier integral (whereQ 0 is the flux atx=0). The analytic expressions for flow variables have been obtained by applying perturbation method in terms of wall parameter ε. The effects of ε on pressure drop across the tube, radial velocity and wall shear have been studied in the case of exponentially decaying bulk flow and it has been found that the results are in agreement with the existing ones for the renal tubules.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
Summary Prototype sand-worm filtration beds were constructed at two prawn farms and one fish farm to assess and demonstrate their polychaete (marine worm) production and wastewater remediation capacities at semi-commercial scale. Wastewater treatment properties were monitored and worms produced were assessed and either sold for bait or used by the farms’ hatcheries as broodstock (prawn or fish breeder) feed. More than 34 megalitres of prawn- and fish-pond water was beneficially treated in the 116-319-d trial. The design of the polychaete-assisted sand filters (PASFs) constructed at each farm affected their water handling rates, which on average ranged from 315 to 1000 L m-2 d-1 at the three farms. A low profile design incorporating shallow bunded ponds made from polyethylene liner and timber stakes provided the easiest method of construction. This simple design applied at broad scale facilitated the highest quantities of treated water and the greatest worm production. Designs with higher sides increased the head pressure above the sand bed surface, thus increasing the amount of water that could be treated each day. Most water qualities were affected in a similar way to that demonstrated in the previous tank trials: dissolved oxygen, pH, total suspended solids and chlorophyll a levels were all consistently significantly lowered as pond water percolated through the sand bed, and dissolved forms of nitrogen and phosphorus were marginally increased on several occasions. However, unlike the previous smaller-scale tank trials, total nitrogen (TN) and total phosphorus (TP) levels were both significantly lowered by these larger-scale PASFs. The reasons for this are still unclear and require further research. Maximum TN and TP removals detected in the trial were 48.8% and 67.5%, respectively, and average removals (in unfed beds) at the three farms ranged from 20.0 to 27.7% for TN and from 22.8 to 40.8% for TP. Collectively, these results demonstrate the best suspended solids, chlorophyll and macronutrient removal capacities so far reported for any mariculture wastewater treatment methodology to date. Supplemental feeding of PASFs with fish meal was also investigated at one farm as a potential means of increasing their polychaete biomass production. Whilst fed beds produced higher biomass (152 ± 35 g m-2) compared with unfed beds (89 ± 17 g m-2) after 3.7 months of operation, the low number of replicates (2) prevented statistically significant differences from being demonstrated for either growth or survival. At harvest several months later, worm biomass production was estimated to be similar to, or in slight excess of, previously reported production levels (300-400 g m-2). Several qualities of filtered water appear to have been affected by supplemental feeding: it appeared to marginally lower dissolved oxygen and pH levels, and increased the TN and TP levels though not so much to eliminate significant beneficial water treatment effects. Periodic sampling during an artificial-tide demonstrated the tendency for treated-water quality changes during the first hour of filtration. Total nitrogen and ammonia peaked early in the tidal flow and then fell to more stable levels for the remainder of the filtration period. Other dissolved nutrients also showed signs of this sand-bed-flushing pattern, and dissolved oxygen tended to climb during the first hour and become more stable thereafter. These patterns suggest that the routine sampling of treated water undertaken at mid-inflow during the majority of the wider study would likely have overestimated the levels of TN and dissolved nutrients discharged from the beds, and hence underestimated the PASFs treatment efficacies in this regard. Analyses of polychaete biomass collected from each bed in the study revealed that the worms were free from contamination with the main prawn viruses that would create concerns for their feeding to commercial prawn broodstock in Australia. Their documented proximal and nutritional contents also provide a guide for hatchery operators when using live or frozen stock. Their dry matter content ranged from 18.3 to 22.3%, ash ranged from 10.2 to 14.0%, gross energy from 20.2 to 21.5 MJ kg-1, and fat from 5.0 to 9.2%. Their cholesterol levels ranged from 0.86 to 1.03% of dry matter, whilst total phospholipids range from 0.41 to 0.72%. Thirty-one different fatty acids were present at detectable (≥0.005% of dry matter) levels in the sampled worm biomass. Palmitic acid was by far the most prevalent fatty acid detected (1.21 ± 0.18%), followed by eicosapentaenoic (EPA) (0.48 ± 0.03%), stearic (0.46 ± 0.04%), vaccenic (0.38 ± 0.05%), adrenic (0.35 ± 0.02%), docosadienoic (0.28 ± 0.02%), arachidonic (AA) (0.22 ± 0.01%), palmitoleic (0.20 ± 0.04%) and 23 other fatty acids with average contents of less than 0.2% of dry matter. Supplemental feeding with fish meal at one farm appeared to increase the docosahexaenoic acid (DHA) content of the worms considerably, and modify the average AA : EPA : DHA from 1.0 : 2.7 : 0.3 to 1.0 : 2.0 : 1.1. Consistent with previous results, the three most heavily represented amino acids in the dry matter of sampled worms were glutamic acid (8.5 ± 0.2%), aspartic acid (5.5 ± 0.1%) and glycine (4.9 ± 0.5%). These biomass content results suggest that worms produced in PASF systems are well suited to feeding to prawn and fish broodstock, and provide further strong evidence of the potential to modify their contents for specific nutritional uses. The falling wild-fishery production of marine bloodworms in Queensland is typical of diminishing polychaete resources world-wide and demonstrates the need to develop sustainable production methods here and overseas. PASF systems offer the dual benefits of wastewater treatment for environmental management and increased productivity through a valuable secondary crop grown exclusively on waste nutrients.
Resumo:
Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.
Resumo:
Khaya senegalensis, African mahogany, a high-value hardwood, was introduced in the Northern Territory (NT) in the 1950s; included in various trials there and at Weipa, Q in the 1960s-1970s; planted on ex mine sites at Weipa (160 ha) until 1985; revived in farm plantings in Queensland and in trials in the NT in the 1990s; adopted for large-scale, annual planting in the Douglas-Daly region, NT from 2006 and is to have the planted area in the NT extended to at least 20,000 ha. The recent serious interest from plantation growers, including Forest Enterprises Australia Ltd (FEA), has seen the establishment of some large scale commercial plantations. FEA initiated the current study to process relatively young plantation stands from both Northern Territory and Queensland plantations to investigate the sawn wood and veneer recovery and quality from trees ranging from 14 years (NT – 36 trees) to 18-20 years (North Queensland – 31 trees). Field measures of tree size and straightness were complemented with log end splitting assessment and cross-sectional disc sample collection for laboratory wood properties measurements including colour and shrinkage. End-splitting scores assessed on sawn logs were relatively low compared to fast grown plantation eucalypts and did not impact processing negatively. Heartwood proportion in individual trees ranged from 50% up to 92 % of butt cross-sectional disc area for the visually-assessed dark coloured central heartwood and lighter coloured transition wood combined. Dark central heartwood proportion was positively related to tree size (R2 = 0.57). Chemical tests failed to assist in determining heartwood – sapwood boundary. Mean basic density of whole disc samples was 658 kg/m3 and ranged among trees from 603 to 712 kg/m3. When freshly sawn, the heartwood of African mahogany was orange-red to red. Transition wood appeared to be pinkish and the sapwood was a pale yellow colour. Once air dried the heartwood colour generally darkens to pinkish-brown or orange-brown and the effect of prolonged time and sun exposure is to darken and change the heartwood to a red-brown colour. A portable colour measurement spectrophotometer was used to objectively assess colour variation in CIE L*, a* and b* values over time with drying and exposure to sunlight. Capacity to predict standard colour values accurately after varying periods of direct sunlight exposure using results obtained on initial air-dried surfaces decreased with increasing time to sun exposure. The predictions are more accurate for L* values which represent brightness than for variation in the a* values (red spectrum). Selection of superior breeding trees for colour is likely to be based on dried samples exposed to sunlight to reliably highlight wood colour differences. A generally low ratio between tangential and radial shrinkages was found, which was reflected in a low incidence of board distortion (particularly cupping) during drying. A preliminary experiment was carried out to investigate the quality of NIR models to predict shrinkage and density. NIR spectra correlated reasonably well with radial shrinkage and air dried density. When calibration models were applied to their validation sets, radial shrinkage was predicted to an accuracy of 76% with Standard Error of Prediction of 0.21%. There was also a strong predictive power for wood density. These are encouraging results suggesting that NIR spectroscopy has good potential to be used as a non-destructive method to predict shrinkage and wood density using 12mm diameter increment core samples. Average green off saw recovery was 49.5% (range 40 to 69%) for Burdekin Agricultural College (BAC) logs and 41.9% (range 20 to 61%) for Katherine (NT) logs. These figures are about 10% higher than compared to 30-year-old Khaya study by Armstrong et al. (2007) however they are inflated as the green boards were not docked to remove wane prior to being tallied. Of the recovered sawn, dried and dressed volume from the BAC logs, based on the cambial face of boards, 27% could potentially be used for select grade, 40% for medium feature grade and 26% for high feature grades. The heart faces had a slightly higher recovery of select (30%) and medium feature (43%) grade boards with a reduction in the volume of high feature (22%) and reject (6%) grade boards. Distribution of board grades for the NT site aged 14 years followed very similar trends to those of the BAC site boards with an average (between facial and cambial face) 27% could potentially be used for select grade, 42% for medium feature grade, 26% for high feature grade and 5% reject. Relatively to some other subtropical eucalypts, there was a low incidence of borer attack. The major grade limiting defects for both medium and high feature grade boards recovered from the BAC site were knots and wane. The presence of large knots may reflect both management practices and the nature of the genetic material at the site. This stand was not managed for timber production with a very late pruning implemented at about age 12 years. The large amount of wane affected boards is indicative of logs with a large taper and the presence of significant sweep. Wane, knots and skip were the major grade limiting defects for the NT site reflecting considerable amounts of sweep with large taper as might be expected in younger trees. The green veneer recovered from billets of seven Khaya trees rotary peeled on a spindleless lathe produced a recovery of 83% of green billet volume. Dried veneer recovery ranged from 40 to 74 % per billet with an average of 64%. All of the recovered grades were suitable for use in structural ply in accordance to AS/NZ 2269: 2008. The majority of veneer sheets recovered from all billets was C grade (27%) with 20% making D grade and 13% B grade. Total dry sliced veneer recovery from the logs of the two largest logs from each location was estimated to be 41.1%. Very positive results have been recorded in this small scale study. The amount of colour development observed and the very reasonable recoveries of both sawn and veneer products, with a good representation of higher grades in the product distribution, is encouraging. The prospects for significant improvement in these results from well managed and productive stands grown for high quality timber should be high. Additionally, the study has shown the utility of non-destructive evaluation techniques for use in tree improvement programs to improve the quality of future plantations. A few trees combined several of the traits desired of individuals for a first breeding population. Fortunately, the two most promising trees (32, 19) had already been selected for breeding on external traits, and grafts of them are established in the seed orchard.
Resumo:
This paper develops theory that quantifies transit route passenger-relative load factor and distinguishes it from occupancy load factor. The ratio between these measures is defined as the load diversity coefficient, which as a single measure characterizes the diversity of passenger load factor between route segments according to the origin-destination profile. The relationship between load diversity coefficient and route coefficient of variation in occupancy load factor is quantified. Two tables are provided that enhance passenger capacity and quality of service (QoS) assessment regarding onboard passenger load. The first expresses the transit operator’s perspective of load diversity and the passengers’ perspective of load factor relative to the operator’s, across six service levels corresponding to ranges of coefficient of variation in occupancy load factor. The second interprets the relationships between passenger average travel time and each of passenger-relative load factor and occupancy load factor. The application of this methodology is illustrated using a case study of a premium radial bus route in Brisbane, Australia. The methodology can assist in benchmarking and decision making regarding route and schedule design. Future research will apply value of time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent aboard. This would also assist in transit service quality econometric modeling.
Variation in tracheid cross-sectional dimensions and wood viscoelasticity extent and control methods
Resumo:
Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.
Resumo:
Characterisation of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modelling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate, in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Premeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checkinng degradation.
Resumo:
This report evaluates the wood and veneer properties of plantation-grown spotted gum (Corymbia citriodora subsp. variegata, or CCV) and Dunn's white gum (Eucalyptus dunnii), grown at different stockings, in thinning trials near Ellangowan in north-east New South Wales (mean annual rainfall 1050 mm) and Kingaroy in south-east Queensland (mean annual rainfall 873 mm). Thinning trials were established at age seven years. Both species showed a significant increase in stem diameter growth of the dominant trees in response to thinning. At age 10 years, trees from the unthinned (950–1270 stems ha-1) and 300 stems ha-1 treatments were selected for veneering. Five dominant trees were felled from each combination of species x sites x thinning treatment. Diameter at breast height over bark of the selected trees ranged from 20 cm to 27 cm at Ellangowan, and 19 cm to 26 cm at Kingaroy. From each tree, 1.5 m long billets were removed at two positions: a butt billet from 0.3–1.8 m above ground and a top billet from approximately 5.5–7.0 m. Log end splitting was assessed 24 hours after harvesting and again after steaming, approximately four days after harvesting. Disks from just above both billets were collected for assessment of wood properties. Billets were peeled on a spindleless veneer lathe to produce a full veneer ribbon with a target green thickness of 2.8 to 3.0 mm. The 1.55 m wide (tangential dimension) veneer sheets were dried and graded according to AS/NZ Standard 2269:2008, which describes four veneer grades. Veneer samples taken along the length of the veneer ribbon, at regular intervals of 1.55 m, were tested for stiffness, shrinkage and density. Veneer length measurements were used to calculate the radial distance of each sample from the central axis of the billet. Overall veneer gross recoveries ranged from 50% to 70%. They were significantly lower at the Kingaroy site, for both species. The veneer recoveries achieved were 2–3 times higher than typical green off saw recoveries from small plantation hardwood logs of similar diameter. Most of the veneer recovered was classified as D-grade. CCV trees from the Ellangowan site yielded up to 38% of the better C-grade and higher grade veneers. The main limiting factors that prevented veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Log end splits were higher for E. dunnii than for CCV, and logs from Ellangowan exhibited more severe splitting. Split index was generally higher for top than for butt billets. Split index was strongly correlated with the average veneer grade from corresponding billets. The Ellangowan site, where rainfall was higher and trees grew faster, yielded significantly denser and stiffer veneers than did the drier sites near Kingaroy, where tree growth was slower. The difference was more pronounced for E. dunnii than for CCV. Differences in measured wood properties between thinned and unthinned treatments were generally small and not significant. On average, 10% of billet volume was lost during the peeling rounding-up process. Much of the wood laid down following thinning was removed during rounding-up, meaning the effect of thinning on veneer properties could not be effectively assessed. CCV was confirmed as having high veneer density and very good veneer stiffness, exceeding 15 GPa, making it very suitable for structural products. E. dunnii also demonstrated good potential as a useful structural plywood resource, achieving stiffness above 10 GPa. Veneer stiffness and density in CCV increased from pith to bark at both sites, while for E. dunnii there was a radial increase in these properties at the Ellangowan site only. At the drier Kingaroy site, veneer stiffness and density declined from mid-radius to the log periphery. This may be associated with prolonged drought from 2005 to 2009, corresponding to the later years of tree growth at the Kingaroy site. CCV appeared to be less sensitive to drought conditions. Standing tree acoustic velocity, determined by the Fakopp time-of-flight method, provided a reliable prediction of average veneer stiffness for both species (R2=0.78 for CCV and R2=0.90 for E. dunnii) suggesting that the Fakopp method may be a useful indicator of tree and stand quality, in terms of veneer stiffness in standing trees.
Resumo:
The effect of temperature on height growth of Scots pine in the northern boreal zone in Lapland was studied in two different time scales. Intra-annual growth was monitored in four stands in up to four growing seasons using an approximately biweekly measurement interval. Inter-annual growth was studied using growth records representing seven stands and five geographical locations. All the stands were growing on a dry to semi-dry heath that is a typical site type for pine stands in Finland. The applied methodology is based on applied time-series analysis and multilevel modelling. Intra-annual elongation of the leader shoot correlated with temperature sum accumulation. Height growth ceased when, on average, 41% of the relative temperature sum of the site was achieved (observed minimum and maximum were 38% and 43%). The relative temperature sum was calculated by dividing the actual temperature sum by the long-term mean of the total annual temperature sum for the site. Our results suggest that annual height growth ceases when a location-specific temperature sum threshold is attained. The positive effect of the mean July temperature of the previous year on annual height increment proved to be very strong at high latitudes. The mean November temperature of the year before the previous had a statistically significantly effect on height increment in the three northernmost stands. The effect of mean monthly precipitation on annual height growth was statistically insignificant. There was a non-linear dependence between length and needle density of annual shoots. Exceptionally low height growth results in high needle-density, but the effect is weaker in years of average or good height growth. Radial growth and next year s height growth are both largely controlled by current July temperature. Nevertheless, their growth variation in terms of minimum and maximum is not necessarily strongly correlated. This is partly because height growth is more sensitive to changes in temperature. In addition, the actual effective temperature period is not exactly the same for these two growth components. Yet, there is a long-term balance that was also statistically distinguishable; radial growth correlated significantly with height growth with a lag of 2 years. Temperature periods shorter than a month are more effective variables than mean monthly values, but the improvement is on the scale of modest to good when applying Julian days or growing-degree-days as pointers.
Resumo:
THE PROCESS of mass transfer from saturated porous surfaces virtual origin ; exposed to turbulent air streams finds many practical applitransverse coordinate; cations. In many cases, the air stream will be in the form of a height of nozzle above flat plate--radial wall jet; wall jet over the porous surface. The aerodynamics of both plane and radial wall jets have been investigated in detail and a vast amount of literature is available on the subject [l-3].