995 resultados para REACCION QUIMICA
Resumo:
The aromaticity index is an important tool for the investigation of aromatic molecules. This work consists on new applications of the aromaticity index developed by teacher Caio Lima Firme, so-called D3BIA (density, delocalization, degeneracy-based index of aromaticity). It was investigated its correlation with other well-known aromaticity indexes, such as HOMA (harmonic oscillator model of aromaticity), NICS (nucleus independent chemical shielding), PDI (para-delocalization index), magnetic susceptibility (), and energetic factor in the study of aromaticity of acenes and homoaromatic species based on bisnoradamantanyl cage. The density functional theory (DFT) was used for optimization calculations and for obtaining energetic factors associated with aromaticity and indexes HOMA and NICS. From quantum theory of atoms in molecules (QTAIM) it was obtained the indexes D3BIA, PDI and . For acenes, when the over-mentioned indexes were applied it was observed no correlation except for D3BIA and HOMA (R2=0.752). For bisnoradamantenyl dication and its derivatives, it was obtained a good correlation between D3BIA and NICS. Moreover, it was evaluated solely one of the factors used on D3BIA calculation, the delocalization index uniformity (DIU), so as to investigate its possible influence on stability of chemical species. Then, the DIU was compared with the formation Gibbs free energy of some pairs of carbocations, isomers or not, which each pair had small difference in point group symmetry and no difference among other well-known stability factors. The obtained results indicate that DIU is a new stability factor related to carbocations, that is, the more uniform the electron density delocalization, the more stable the is carbocation. The results of this work validate D3BIA and show its importance on the concept of aromaticity, indicating that it can be understood from degeneracy of atoms belonging the aromatic site, the electronic density in the aromatic site and the degree of uniformity of electron delocalization
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
Metal Organic Frameworks (MOFs) are supramolecular structures consisted of ions or metal clusters coordinated to organic ligands which are repeated in two or three dimensions. These structures have atracted much attention due to their properties such as low density, high specific surface area and large volume of pores. In this work, MOFs consisted of zinc clusters connected by ditopic ligands, terephthalic acid (1,4- H2BDC) or isophthalic acid (1,3-H2BDC) were synthesized. To obtain the proposed materials, different routes and synthetic parameters were tested, such as the molar ratio of the precursors, the addition of template molecules, the type of solvente, the addition of organic base or the type of a counter-ion of Zn salt. It was found that the variation of these parameters led to the formation of different metalorganic structures. The solids obtained were characterized by XRD, SEM and IR. For the samples identified as MOF- 5, it was verified that the structure was composed of both interpenetrated and non interpenetrated structures. These samples showed a low stability, becoming totally transformed into another structure within less than 72 hours. The addition of the nickel and/or cobalt was found to be a promissing method for increasing the stability of MOF- 5, which in this case, still remained unconverted to another structure even after 15 days of exposure to air. The samples prepared from 1,3-H2BDC were probably new, still unknown Metal Organic Frameworks
Resumo:
The construction of wells is one of the most important activities of the oil industry. The drilling process is the set of activities and operations to design, program and perform the opening thereof. During this process, the cuttings are removed by the drilling fluid, or mud, and carted to the surface. This fluid is injected into the drill string and returns to the surface through the annular space between the well walls and the drill string. After the descent of the column casing, the annular space between the casing string and the walls of the borehole is filled with cement so as to secure the spine and prevent any migration of fluids between the various permeable zones traversed by the well behind of the coating. To ensure the good quality of the cementation scrubbers are used mattresses which are pumped ahead of the cement slurry so as to avoid contamination of the drilling fluid paste, or vice versa, and assist in the removal of plaster, formed by drilling fluid of the borehole walls, thus enabling a better cement bond to the well. Within this context, this work aims to evaluate the efficiency of mattresses scrubbers, the basis of ionic and nonionic surfactants, on the removal of nonaqueous drilling fluid, based on n-paraffin in oil wells, and the compatibility between the Mattress relations washer / drilling fluid bed scrubber / cement paste mattress washer / cement slurry / drilling fluid and the drilling fluid / cement slurry using laboratory tests rheology, thickening time and compressive strength. Also technique was performed X-ray diffraction (XRD) for a more detailed analysis of these mixtures with hydrated cement paste. In compatibility tests the conditions of temperature and pressure used in the same laboratory procedure simulating the conditions of oil wells, the well is considered the depth of 800 m. The results showed that the compositions of the mattress washer nonionic, KMS obtained a 100% efficient in removing the non-aqueous drilling fluid, and the best formulation showed good results with respect to compliance testing
Resumo:
Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process
Resumo:
Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The aim of this study was to generate an asymmetric biocompactible and biodegradable chitosan membrane modified by the contact with a poly(acrylic acid) solution at one of its sides at room temperature and 60◦C. The pure chitosan membrane, as well as the ones treated with poly(acrylic acid) were characterized by infrared spectroscopy (FTIRATR) at angles of 39◦, 45◦ and 60◦ , swelling capacity in water, thermal analysis (TG/DTG), scanning electronic microscopy (SEM) and permeation experiments using metronidazole at 0,1% and 0,2% as a model drug. The results confirmed the presence of ionic interaction between chitosan and poly(acrylic acid) by means of a polyelectrolyte complex (PEC) formation. They also showed that such interactions were more effective at 60◦C since this temperature is above the chitosan glass transition temperature wich makes the diffusion of poly(acrylic acid) easier, and that the two treated membranes were asymmetrics, more thermically stable and less permeable in relation to metronidazole than the pure chitosan membrane
Resumo:
It was synthesized MnZn ferrite with general formulae Mn1-xZnxFe2O4 (mol%), 0,3 ≤ x ≤ 0,7 by using the citrate precursor method. The precursors decomposition was studied by thermogravimetric analysis (TGA), differential thermogravimetric analysis (DTG), differential thermal analysis (DTA) and Fourier transform infrared (FTIR) of powder calcined at 350ºC/3,5h. X-ray diffraction pattern (XRD) of samples was done from 350 to 1200ºC/2h using various atmospheres. The power calcined at 350ºC/3,5h formed spinel phase. It is necessary atmosphere control to avoid secondary phase such as hematite. From 900 to 1200ºC was obtained 90,66 and 100% of MnZn spinel ferrite phase, respectively. Analysis by dispersive energy scanning (EDS) at 350ºC shows high Mn and Zn dispersion, indicating that the diffusion process was homogeneous. Semi-quantitative analysis by EDS verified that despite the atmosphere control during calcinations at high temperatures (< 800ºC) occurred ZnO evaporation causing stoichiometric deviation. Vibrating sample magnetometer (VSM) measures show soft ferrite material characteristics with Hc from 6,5 x 10-3 to 11,1 x 10-2 T. Saturation magnetization (Ms) and initial permeability (µi) of MnZn spinel phase obtained, respectively, from 14,3 to 83,8 Am2/kg and 14,1 to 62,7 (Am2/kg)T
Resumo:
Soil contamination by pesticides is an environmental problem that needs to be monitored and avoided. However, the lack of fast, accurate and low cost analytical methods for discovering residual pesticide in complex matrices, such as soil, is a problem still unresolved. This problem needs to be solved before we are able to assess the quality of environmental samples. The intensive use of pesticides has increased since the 60s, because the dependence of their use, causing biological imbalances and promoting resistance and recurrence of high populations of pests and pathogens (upwelling). This has contributed to the appearance of new pests that were previously under natural control. To develop analytical methods that are able to quantify residues pesticide in complex environment. It is still a challenge for many laboratories. The integration of two analytical methods one ecotoxicological and another chemical demonstrates the potential for environmental analysis of methamidophos. The aim of this study was to evaluate an ecotoxicological method as "screening" analytical methamidophos in the soil and perform analytical confirmation in the samples of the concentration of the analyte by chemical method LC-MS/MS In this work we tested two soils: a clayey and sandy, both in contact with the kinetic methamidophos model followed pseudo-second order. The clay soil showed higher absorption of methamidophos and followed the Freundlich model, while the sandy, the Langmuir model. The chemical method was validated LC-MS/MS satisfactory, showing all parameters of linearity, range, precision, accuracy, and sensitivity adequate. In chronic ecotoxicological tests with C. dubia, the NOEC was 4.93 and 3.24 for ng L-1 of methamidophos to elutriate assays of sandy and clay soils, respectively. The method for ecotoxicological levels was more sensitive than LC-MS/MS detection of methamidophos, loamy and sandy soils. However, decreasing the concentration of the standard for analytical methamidophos and adjusting for the validation conditions chemical acquires a limit of quantification (LOQ) in ng L-1, consistent with the provisions of ecotoxicological test. The methods described should be used as an analytical tool for methamidophos in soil, and the ecotoxicological analysis can be used as a "screening" and LC-MS/MS as confirmatory analysis of the analyte molecule, confirming the objectives of this work
Resumo:
In this work, the structures of LaCoO3, La0,8Ba0,2CoO3 and La0,8Ca0,2CoO3 perovskites were characterized as a function of temperature (LaCoO3 structure being analyzed only at room temperature). The characterization of these materials were made by X-Ray Absorption Spectroscopy (XAS), in the cobalt K-edge, taking into account the correlated Einstein model X-ray absorption fine structure (EXAFS). The first part of the absorption spectrum corresponded the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These materials were prepared by the combustion method. The combustion products were calcinated at 900 0C, for 6 hours in air. Noted that the sample LaCoO3 at room temperature and samples doped with Calcium and Barium in the temperature range of 50 K to 298 K showed greater distortion to monoclinic symmetry with space group I2/a. However, the sample doped with barium at the temperatures 50 K, 220 K, and 260 K showed a slight distortion to rhombohedral symmetry with space group R-3c. The La0,8Ca0, 2CoO3 structure was few sensitive to temperature variation, showing a higher local distortion in the octahedron and a higher local thermal disorder. These interpretations were in agreement with the information electronic structural on the XANES region and geometric in the EXAFS region
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
Magnetic particles are systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover magnetic particles with an organic material, as polymers. In this work, magnetic particles were obtained through covering magnetite particles with poly(methyl methacrylate‐comethacrylic acid) via miniemulsion polymerization process. The resultant materials were characterized X‐ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential () measurements and vibrating sample magnetometry (VSM). XRD results showed magnetite as the predominant cristalline phase in all samples and that cristallites had nanometric dimensions. Thermogravimetric analysis revealed an increase in polymer thermal stability as a result of magnetite encapsulation. TGA results showed also that the encapsulation efficiency was directly related to nanoparticles s hidrofobicity degree. VSM measurements showed that magnetic polymeric particles were superparamagnetic, so that they may be potentially used for magnetic (bio)separation
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR