953 resultados para Régression de Poisson
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
Queueing system in which arriving customers who find all servers and waiting positions (if any) occupied many retry for service after a period of time are retrial queues or queues with repeated attempts. This study deals with two objectives one is to introduce orbital search in retrial queueing models which allows to minimize the idle time of the server. If the holding costs and cost of using the search of customers will be introduced, the results we obtained can be used for the optimal tuning of the parameters of the search mechanism. The second one is to provide insight of the link between the corresponding retrial queue and the classical queue. At the end we observe that when the search probability Pj = 1 for all j, the model reduces to the classical queue and when Pj = 0 for all j, the model becomes the retrial queue. It discusses the performance evaluation of single-server retrial queue. It was determined by using Poisson process. Then it discuss the structure of the busy period and its analysis interms of Laplace transforms and also provides a direct method of evaluation for the first and second moments of the busy period. Then it discusses the M/ PH/1 retrial queue with disaster to the unit in service and orbital search, and a multi-server retrial queueing model (MAP/M/c) with search of customers from the orbit. MAP is convenient tool to model both renewal and non-renewal arrivals. Finally the present model deals with back and forth movement between classical queue and retrial queue. In this model when orbit size increases, retrial rate also correspondingly increases thereby reducing the idle time of the server between services
Resumo:
Certain organic crystals are found to possess high non- linear optical coefficients,often one to two orders of magnitude higher than those of the well known inorganic non-linear optical materials.Benzoyl glycine is one such crystal whose optical second-harmonic generation efficiency is much higher than that of potassium dihydrogen phosphate. Single crystals of benzoyl glycine are grown by solvent evaporation technique using N,N-dimethyl formamide as the solvent.All the nine second-order elastic stiffness constants of this orthorhombic crystal are determined from ultrasonic wave velocity measurements employing the pulse echo overlap technique.The anisotropy of elastic wave propagation in this crystal is demonstrated by plotting the phase velocity, slowness,Young's modulus and linear compressibility surfaces along symmetry planes.The volume compressibility, bulk modulus and relevant Poisson's ratios are also determined. Variation of the diagonal elastic stiffness constants with temperature over a limited range are measured and reported.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.
Influencia de la concentración de polielectrolito en el binding específico y electrostático de iones
Resumo:
Màster Experimental en Química: Química Física
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
In this thesis, certain continuous time inventory problems with positive service time under local purchase guided by N/T-policy are analysed. In most of the cases analysed, we arrive at stochastic decomposition of system states, that is, the joint distribution of the system states is obtained as the product of marginal distributions of the components. The thesis is divided into ve chapters
Resumo:
A LCAO-MO (linear combination of atomic orbitals - molecular orbitals) relativistic Dirac-Fock-Slater program is presented, which allows one to calculate accurate total energies for diatomic molecules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integrations as well as the solution of the Poisson equation are done fully numerical, with a relative accuracy of 10{^-5} - 10{^-6}. The details of the method as well as first results are presented here.
Resumo:
We report on the solution of the Hartree-Fock equations for the ground state of the H_2 molecule using the finite element method. Both the Hartree-Fock and the Poisson equations are solved with this method to an accuracy of 10^-8 using only 26 x 11 grid points in two dimensions. A 41 x 16 grid gives a new Hartree-Fock benchmark to ten-figure accuracy.
Resumo:
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.