993 resultados para Quasi-Bilateral Generating Function
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.
Resumo:
PURPOSE: Patients with hereditary retinoblastoma (Rb) develop in 4%-8% a malignant midline tumor called trilateral Rb (TRb). We report in this study on benign pineal cysts observed in patients investigated for TRb. PATIENTS AND METHODS: Between September 1990 and December 2001, 172 patients were screened for TRb. Ninty-five had bilateral, 77 unilateral disease. The median age at diagnosis of Rb was 7 months (range 1-26). Treatment included enucleation, local treatment with cryotherapy or photocoagulation, first-line chemotherapy (CT), thermo-chemotherapy (TCT), Ruthenium plaque, and, rarely, external beam radiation (EBR). RESULTS: TRb was found in 5/95 patients (5.3%) with bilateral disease. Interestingly, five other patients (5.3%) presented a pineal cyst on magnetic resonance imaging (MRI). No cysts were recorded in the 77 patients with unilateral disease. This difference was statistically significant (P < 0.05). The median age at diagnosis of the pineal cyst was 26 months (range 16-80), much younger than reported in literature for healthy children. Four of five patients with TRb died of the disease, while all the patients with pineal cysts remained stable and asymptomatic during a median follow-up of 41 months (range 37-54). CONCLUSIONS: This report describes benign cystic lesions of the pineal gland in patients with hereditary Rb, suggesting a benign variant of TRb. Underlying possible pathogenetic mechanisms are discussed.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
OBJECTIVE: Both subclinical hypothyroidism and the metabolic syndrome have been associated with increased risk of coronary heart disease events. It is unknown whether the prevalence and incidence of metabolic syndrome is higher as TSH levels increase, or in individuals with subclinical hypothyroidism. We sought to determine the association between thyroid function and the prevalence and incidence of the metabolic syndrome in a cohort of older adults. DESIGN: Data were analysed from the Health, Ageing and Body Composition Study, a prospective cohort of 3075 community-dwelling US adults. PARTICIPANTS: Two thousand one hundred and nineteen participants with measured TSH and data on metabolic syndrome components were included in the analysis. MEASUREMENTS: TSH was measured by immunoassay. Metabolic syndrome was defined per revised ATP III criteria. RESULTS: At baseline, 684 participants met criteria for metabolic syndrome. At 6-year follow-up, incident metabolic syndrome developed in 239 individuals. In fully adjusted models, each unit increase in TSH was associated with a 3% increase in the odds of prevalent metabolic syndrome (OR, 1.03; 95% CI, 1.01-1.06; P = 0.02), and the association was stronger for TSH within the normal range (OR, 1.16; 95% CI, 1.03-1.30; P = 0.02). Subclinical hypothyroidism with a TSH > 10 mIU/l was significantly associated with increased odds of prevalent metabolic syndrome (OR, 2.3; 95% CI, 1.0-5.0; P = 0.04); the odds of incident MetS was similar (OR 2.2), but the confidence interval was wide (0.6-7.5). CONCLUSIONS: Higher TSH levels and subclinical hypothyroidism with a TSH > 10 mIU/l are associated with increased odds of prevalent but not incident metabolic syndrome.
Resumo:
Two Aedes aegypti (L.) populations were studied in the laboratory regarding the preference for three types of breeding sites, i.e., flasks containing only water, flasks with a plant and flasks with a stick. Each of these breeding units was placed in one cage and the choice of the oviposition sites was determined for individual females and three females per experimental unit at two humidity levels. Preference for ovipositing on the water surface was observed and varied according to experimental unit and humidity. Mean hatching of eggs in water surface was 46.6%. Experiments with three females showed a more marked difference than when only one female was used. Inter and intrapopulation variability regarding oviposition sites was observed. The discrimination between the different oviposition substrates, hatching in water surface and its implication for mosquito control are discussed.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.
Resumo:
OBJECTIVE: A single bolus dose of etomidate decreases cortisol synthesis by inhibiting the 11-beta hydroxylase, a mitochondrial enzyme in the final step of cortisol synthesis. In our institution, all the patients undergoing cardiac surgery receive etomidate at anesthesia induction. The purpose of this study was to assess the incidence of adrenocortical dysfunction after a single dose of etomidate in selected patients undergoing major cardiac surgery and requiring high-dose norepinephrine postoperatively. STUDY DESIGN: Retrospective descriptive study in the surgical ICU of a university hospital. PATIENTS AND METHODS: Sixty-three patients presented acute circulatory failure requiring norepinephrine (>0,2 microg/kg/min) during the 48 hours following cardiac surgery. Absolute adrenal insufficiency was defined as a basal cortisol below 414 nmo/l (15 microg/dl) and relative adrenal insufficiency as a basal plasma cortisol between 414 nmo/l (15 microg/dl) and 938 nmo/l (34 microg/dl) with an incremental response after 250 microg of synthetic corticotropin (measured at 60 minutes) below 250 nmol/l (9 microg/dl). RESULTS: Fourteen patients (22%) had normal corticotropin test results, 10 (16%) had absolute and 39 (62%) relative adrenal insufficiency. All patients received a low-dose steroid substitution after the corticotropin test. Substituted patients had similar clinical outcomes compared to patients with normal adrenal function. CONCLUSION: A high incidence of relative adrenal failure was observed in selected cardiac surgery patients with acute postoperative circulatory failure.
Resumo:
Several pieces of evidence suggest that sleep deprivation causes marked alterations in neurotransmitter receptor function in diverse neuronal cell types. To date, this has been studied mainly in wake- and sleep-promoting areas of the brain and in the hippocampus, which is implicated in learning and memory. This article reviews findings linking sleep deprivation to modifications in neurotransmitter receptor function, including changes in receptor subunit expression, ligand affinity and signal transduction mechanisms. We focus on studies using sleep deprivation procedures that control for side-effects such as stress. We classify the changes with respect to their functional consequences on the activity of wake-promoting and/or sleep-promoting systems. We suggest that elucidation of how sleep deprivation affects neurotransmitter receptor function will provide functional insight into the detrimental effects of sleep loss.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.
Resumo:
SUMMARYIntercellular communication is achieved at specialized regions of the plasma membrane by gap junctions. The proteins constituting the gap junctions are called connexins and are encoded by a family of genes highly conserved during evolution. In adult mouse, four connexins (Cxs) are known to be expressed in the vasculature: Cx37, Cx40, Cx43 and Cx45. Several recent studies have provided evidences that vascular connexins expression and blood pressure regulation are closely linked, suggesting a role for connexins in the control of blood pressure. However, the precise function that each vascular connexin plays under physiological and pathophysiological conditions is still not elucidated. In this context, this work was dedicated to evaluate the contribution of each of the four vascular connexins in the control of the vascular function and in the blood pressure regulation.In the present work, we first demonstrated that vascular connexins are differently regulated by hypertension in the mouse aorta. We also observed that endothelial connexins play a regulatory role on eNOS expression levels and function in the aorta, therefore in the control of vascular tone. Then, we demonstrated that Cx40 plays a pivotal role in the kidney by regulating the renal levels of COX-2 and nNOS, two key enzymes of the macula densa known to participate in the control of renin secreting cells. We also found that Cx43 forms the functional gap junction involved in intercellular Ca2+ wave propagation between vascular smooth muscle cells. Finally, we have started to generate transgenic mice expressing specifically Cx40 in the endothelium to investigate the involvement of Cx40 in the vasomotor tone, or in the renin secreting cells to evaluate the role of Cx40 in the control of renin secretion.In conclusion, this work has allowed us to identify new roles for connexins in the vasculature. Our results suggest that vascular connexins could be interesting targets for new therapies caring hypertension and vascular diseases.
Resumo:
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.