875 resultados para Pyroxene.
Resumo:
A facies-genetic and stratigraphic subdivision of the Quaternary sequence in the Shapkina River valley has been accomplished. The riverbank shows outcrops of three glacial complexes with different mineralogical-petrographic compositions and structural characteristics, which can be correlated and stratificated. Datings of intermoraine horizons (alluvial, marine, lacustrine, and lacustrine-boggy sediments) have been based on palynological and paleomicrotheriological data. The Middle Neopleistocene section can be divided into two till horizons corresponding to two autonomous glaciations (Pechora and Vychegda). They are separated by a member of subaqueous Rodionov sediments. The Pechora till formed in the course of glacier motions from the northeast. Glacial horizons are mainly composed of the Vychegda till transported from the Northwest terrigenous provenance. Lithology of the Upper Neopleistocene Polyarnyi till testifies to its formation in the upper course of the river from material transported from the Northeast terrigenous-mineralogical provenance in the upper course of the river and from the Fennoscandian glaciation center in the lower course of the river. The paper presents the first lithological investigation and substantiation of genesis of various facies of Neopleistocene intermoraine marine sediments (sediments of the beach and fore-beach zones and shallow-water shelf).
Resumo:
The mineralogy of the lower Miocene and Quaternary sediments of the drillcore CRP-1 (McMurdo Sound, Ross Sea, Antarctica) has been analysed using the X-ray diffraction method. Quartz, plagioclase feldspars, K-feldspars are the most important non-clay minerals. Amphiboles occur throughout the core in minor amounts. The composition of the sediments points to an origin in the Transantarctic Mountains for the majority of the detrital components. There, the plutonic and metamorphic rocks of the basement, the sediments of the Beacon Supergroup and the volcanic rocks of the Ferrar Dolerite could serve as possible source lithologies. The quartz abundance is strongly linked to the gain size of the sediments with maxima correlating with coarse gain sizes. The downcore distribution of the other detrital minerals is relatively invariable, and does not indicate a major change in the source area during the time represented by the CRP-1 sediments. Some diagenetic alteration of the sediments is indicated by the occurrence of minor amounts of opal-CT and by some clinoptilolite below110 m depth.
Resumo:
The Arctic Ocean System is a key player regarding the climatic changes of Earth. Its highly sensitive ice Cover, the exchange of surface and deep water masses with the global ocean and the coupling with the atmosphere interact directly with global climatic changes. The output of cold, polar water and sea ice influences the production of deep water in the North Atlantic and controls the global ocean circulation ("the conveyor belt"). The Arctic Ocean is surrounded by the large Northern Hemisphere ice sheets which not only affect the sedimentation in the Arctic Ocean but also are supposed to induce the Course of glacials and interglacials. Terrigenous sediment delivered from the ice sheets by icebergs and meltwater as well as through sea ice are major components of Arctic Ocean sediments. Hence, the terrigenous content of Arctic Ocean sediments is an outstanding archive to investigate changes in the paleoenvironment. Glazigenic sediments of the Canadian Arctic Archipelago and surface samples of the Arctic Ocean and the Siberian shelf regions were investigated by means of x-ray diffraction of the bulk fraction. The source regions of distinct mineral compositions were to be deciphered. Regarding the complex circumpolar geology stable christalline shield rocks, active and ancient fold belts including magmatic and metamorphic rocks, sedimentary rocks and wide periglacial lowlands with permafrost provide a complete range of possible mineral combinations. Non- glaciated shelf regions mix the local input from a possible point source of a particular mineral combination with the whole shelf material and function as a sampler of the entire region draining to the shelf. To take this into account, a literature research was performed. Descriptions of outcropping lithologies and Arctic Ocean sediments were scanned for their mineral association. The analyses of glazigenic and shelf sediments yielded a close relationship between their mineral composition and the adjacent source region. The most striking difference between the circumpolar source regions is the extensive outcrop of carbonate rocks in the vicinity of the Canadian Arctic Archipelago and in N Greenland while siliciclastic sediments dominate the Siberian shelves. In the Siberian shelf region the eastern Kara Sea and the western Laptev Sea form a destinct region defined by high smectite, (clino-) pyroxene and plagioclase input. The source of this signal are the extensive outcrops of the Siberian trap basalt in the Putorana Plateau which is drained by the tributaries of the Yenissei and Khatanga. The eastern Laptev Sea and the East Siberian Sea can also be treated as one source region containing a feldspar, quartz, illite, mica, and chlorite asscciation combined with the trace minerals hornblende and epidote. Franz Josef Land provides a mineral composition rich in quartz and kaolinite. The diverse rock suite of the Svalbard archipelago distributes specific mineral compositions of highly metamorphic christalline rocks, dolomite-rich carbonate rocks and sedimentary rocks with a higher diagenetic potential manifested in stable newly built diagenetic minerals and high organic maturity. To reconstruct the last 30,000 years as an example of the transition between glacial and interglacial conditions a profile of sediment cores, recovered during the RV Polarstern" expedition ARK-VIIIl3 (ARCTIC '91), and additional sediment cores around Svalbard were investigated. Besides the mineralogy of different grain size fractions several additional sedimentological and organo-geochemical Parameterswere used. A detailed stratigraphic framework was achieved. By exploiting this data set changes in the mineral composition of the Eurasian Basin sediments can be related to climatic changes. Certain mineral compositions can even be associated with particular transport processes, e.g. the smectitel pyroxene association with sea ice transport from the eastern Kara Sea and the western Laptev Sea. Hence, it is possible to decipher the complex interplay between the influx of warm Atlantic waters into the Southwest of the Eurasian Basin, the waxing and waning of the Svalbard1Barents- Sea- and Kara-Sea-Ice-Sheets, the flooding of the Siberian shelf regions and the surface and deep water circulation. Until now the Arctic Ocean was assumed to be a rather stable System during the last 30,000 years which only switched from a completely ice covered situation during the glacial to seasonally Open waters during the interglacial. But this work using mineral assemblages of sediment cores in the vicinity of Svalbard revealed fast changes in the inflow of warm Atlantic water with the Westspitsbergen Current (< 1000 years), short periods of advances and retreats of the marine based Eurasian ice sheets (1000-3000 years), and short melting phases (400 years?). Deglaciation of the marine-based Eurasian and the land-based north American and Greenland ice sheets are not simultaneous. This thesis postulates that the Kara Sea Ice Sheet released an early meltwater signal prior to 15,000 14C years leading the Barents Sea Ice Sheet while the western land-based ice sheets are following later than 13,500 14C years. The northern Eurasian Basin records the shift between iceberg and sea-ice material derived from the Canadian Arctic Archipelago and N-Greenland and material transported by sea-ice and surface currents from the Siberian shelf region. The phasing of the deglaciation becomes very obvious using the dolomite and quartd phyllosilicate record. It is also supposed that the flooding of the Laptev Sea during the Holocene is manifested in a stepwise increase of sediment input at the Lomonosov Ridge between the Eurasian and Amerasian Basin. Depending on the strength of meltwater pulses from the adjacent ice sheets the Transpolar Drift can probably be relocated. These movements are traceable by the distribution of indicator minerals. Based on the outcome of this work the feasibility of bulk mineral determination can be qualified as excellent tool for paleoenvironmental reconstructions in the Arctic Ocean. The easy preparation and objective determination of bulk mineralogy provided by the QUAX software bears the potential to use this analyses as basic measuring method preceding more time consuming and highly specialised mineralogical investigations (e.g. clay mineralogy, heavy mineral determination).
Resumo:
Die Rekonstruktion der glaziomarinen Sedimentationsprozesse am antarktischen Kontinentalrand des westlichen Bellingshausenmeeres erfolgte durch die sedimentologische Auswertung eines 962 cm langen Schwerelotkernes aus 3594 m Wassertiefe. Der Kern wurde während des Fahrtabschnittes ANT-XI/3 mit dem FS "Polarstern" vom Scheitel einer Sediment- "Drift" gezogen. An dem Sedimentkern wurde eine lithologische Beschreibung, sowie sedimentologische Untersuchungen und sedimentphysikalische Messungen durchgeführt. Anhand der Ergebnisse konnten signifikante Änderungen in der Zusammensetzung und Struktur der Sedimente erkannt, und drei Faziestypen unterschieden werden. Die Faziestypen charakterisieren jeweils glaziale oder interglaziale Zeiträume. Der größte Teil der Sedimentabfolge gehört der Laminitfazies an. Dabei handelt es sich um feinlaminierte Sedimentabschnitte, die vorwiegend aus feinkörnigen, terrigenen Komponenten zusammengesetzt sind. In die feinlaminierten Abschnitte sind vereinzelte, wenige Milimeter bis Zentimeter mächtige Siltlagen eingeschaltet. Die biogenen Anteile sind gering, Anzeichen für Bodenleben fehlen völlig. Die Manganfazies wird von authigen gebildeten Mangankonkretionen dominiert, die jeweils diskrete Lagen bilden. Dabei handelt es sich zum einen um Mikromanganknollen und -krusten und zum andern um manganhaltige Gangfüllungen. Biogene und terrigene Anteile sind in diesem Faziestyp unbedeutend. Die Biogenfazies ist von strukturlosen und stark bioturbierten Sedimenten gekennzeichnet. In diesen Sedimentabschnitten ist der hohe Anteil an Eisfracht (IRD) und die erhöhten Gehalte an Kalziumkarbonat und Opal in der Sandfraktion markant. Die stratigraphische Einordnung des Sedimentkernes erfolgte über die von Grobe & Mackensen (1992) entwickelte Lithostratigraphie, mit deren Einheiten die Faziestypen des Sedimentkernes korreliert werden konnten. Dabei ergaben sich zwei mögliche Altersmodelle und ein Basisalter von ca. 250.000 Jahren. Anhand der stratigraphischen Fixpunkte wurden Sedimentationsraten des Gesamtsedimentes und Akkumulationsraten des Kalziumkarbonates, des Biogenopals und des organisch gebundenen Kohlenstoffes berechnet. Dabei wurde gezeigt, daß lediglich das Kalziumkarbonat und der Biogenopal als Anzeiger für biologische Produktion dienen können, wobei Lösungsprozesse in der Wassersäule und im Sediment eine große Rolle spielen. Der Gehalt an organisch gebundenem Kohlenstoff ist in dem Sedimentkern nur erhaltungsbedingt zu erklären. Die Sedimentationsprozesse der einzelnen Faziestypen sind von den Eisverhältnissen, der biologischen Produktion, dem gravitativen Transport und der Umlagerung durch Meeresströmungen abhängig. Die Auswirkung der einzelnen Faktoren ist jeweils unterschiedlich ausgeprägt und wirkt sich spezifisch auf die einzelnen Parameter aus. In den Glazialen hatte ein Vorstoß des Schelfeises über die Schelfkante zur Anlieferung großer Sedimentmassen geführt, die über gravitativen Transport den Kontinentalhang hinunter transportiert wurden. Die Feinfracht wurde über parallel zum Kontinentalhang laufende Konturströme westwärts transportiert und in der Larninitfazies der Driftkörper abgelagert. Am Ende der Glaziale kam es zur Sedimentation der Manganfazies. Die geringen Sedimentationsraten am Kamm der Sedimentdrift kamen aufgrund reduzierter Intensität der Konturströme und fehlender Umlagerung von Schelfsedimenten in Folge rückschreitender Schelfeisrnassen zustande. In den Interglazialen kam es durch den aufsteigenden Meeresspiegel zum Aufschwimmen des Schelfeises. Der damit verbundene Abbau der Eisrnassen über dem Schelf, hatte eine hohe Sedimentation von IRD zur Folge. Mit fortschreitendem Interglazial kam es in Zeiten nur saisonaler Meereisbedeckung zu verstärkter biologischer Produktion und zur Sedimentation biogenen Materials.
Resumo:
Detrital modes determined on 68 sandstone samples from CRP-3 drillcore indicate a continuation of the dynamic history of uplift-related erosion and unroofing previously documented in CRP-1 and CRP-2/2A. The source area is identified very strongly with the Transantarctic Mountains (TAM) Dry Valleys block in southern Victoria Land. Initial unroofing of the TAM comprised removal of much of a former capping sequence of Jurassic Kirkpatrick basalts, which preceded the formation of the Victoria Land Basin. Erosion of Beacon Supergroup outcrops took place during progressive uplift of the TAM in the Oligocene. Earliest CRP-3 Oligocene samples above 788 metres below the sea floor (mbsf) were sourced overwhelmingly in Beacon Supergroup strata, including a recognisable contribution from Triassic volcanogenic Lashly Formation sandstones (uppermost Victoria Group). Moving up-section, by 500 mbsf, the CRP-3 samples are depauperate quartz arenites dominantly derived from the quartzose Devonian Taylor Group. Between c. 500 and 450 mbsf, the modal parameters show a distinctive change indicating that small outcrops of basement granitoids and metamorphic rocks were also being eroded along with the remaining Beacon (mainly Taylor Group) sequence. Apart from enigmatic fluctuations in modal indices above 450 mbsf, similar to those displayed by samples in CRP-2/2A, the CRP-3 modes are essentially constant (within a broad data scatter) to the top of CRP-3. The proportion of exposed basement outcrop remained at < 20 %, indicating negligible uplift (i.e. relative stability) throughout that period.
Resumo:
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69-84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (~70% crystallization) of the parental melt (~46.4 wt % SiO2, ~2.5 wt % H2O, ~0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of deltaFMQ = 0.9-1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx : (Crt-Mt) ~ 13 : 54 : 24 : 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (~45 wt % SiO2) picrobasalt (~14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ~8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20-30°C lower than the solidus temperature of 'dry' peridotite (1230-1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760-810°C and pressures of ~3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100-125 km beneath Kamchatka was estimated at 4°C/km.
Resumo:
Reprinted from the Annals of the New York academy of sciences, vol. IX, June 1896.
Resumo:
The Shoemaker impact structure, on the southern margin of the Palaeoproterozoic Earaheedy Basin, with an outer diameter of similar to30 km, consists of two well-defined concentric ring structures surrounding a granitoid basement uplift. The concentric structures, including a ring syncline and a ring anticline, formed in sedimentary rocks of the Earaheedy Group. In addition, aeromagnetic and geological field observations suggest that Shoemaker is a deeply eroded structure. The central 12 km-diameter uplift consists of fractured Archaean basement granitoids of syenitic composition (Teague Granite). Shock-metamorphic features include shatter cones in sedimentary rocks and planar deformation features in quartz crystals of the Teague Granite. Universal-stage analysis of 51 sets of planar deformation features in 18 quartz grains indicate dominance of sets parallel to omega (10 (1) over bar3}, but absence of sets parallel to pi (10 (1) over bar2}, implying peak shock pressures in the range of 10-20 GPa for the analysed sample. Geophysical characteristics of the structure include a -100 mus(-2) gravity anomaly coincident with the central uplift and positive circular trends in both magnetic and gravity correlating with the inner ring syncline and outer ring anticline. The Teague Granite is dominated by albite-quartz-K-feldspar with subordinate amounts of alkali pyroxene. The alkali-rich syenitic composition suggests it could either represent a member of the Late Archaean plutonic suite or the product of alkali metasomatism related to impact-generated hydrothermal activity. In places, the Teague Granite exhibits partial to pervasive silicification and contains hydrothermal minerals, including amphibole, garnet, sericite and prehnite. Recent isotopic age studies of the Teague Granite suggest an older age limit of ca 1300 Ma (Ar-Ar on K-feldspar) and a younger age limit of ca 568 Ma (K-Ar on illite-smectite). The significance of the K-Ar age of 568 Ma is not clear, and it might represent either hydrothermal activity triggered by impact-related energy or a possible resetting by tectonothermal events in the region.
Resumo:
Rare earth element (REE) plus yttrium (Y) patterns of modem seawater have characteristic features that can be used as chemical fingerprints. Reliable proxies for marine REE + Y chemistry have been demonstrated from a large geological time span, including Archaean banded iron formation (BIF), stromatolitic limestone, Phanerozoic reef carbonate and Holocene microbialite. Here we present new REE + Y data for two distinct suites of early Archaean (ca. 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland, whose interrelationships, if any, have been much debated in recent literature. The first suite comprises mangetite-quartz BIF, magnetite-carbonate BIF and banded magnetite-rich quartz rock, mostly from the Isua Greenstone Belt (IGB). The REE + Y patterns, particularly diagnostic anomalies (Ce/Ce*, Pr/Pr*), are closely related to those of published seawater proxies. The second suite includes banded quartz-pyroxene-amphibole +/- garnet rocks with minor magnetite from the so-called Akilia Association enclaves (in early Archaean granitoid gneisses) of the coastal region, some 150 km southwest of the IGB. Rocks of this type from one much publicised and highly debated locality (the island of Akilia) have been identified by some workers [Nature 384 (1996) 55; Geochim. Cosmochim. Acta 61 (1997) 2475] as BIF-facies, and their C-13-depleted signature in trace graphite interpreted as a proxy for earliest life on Earth. However, REE + Y patterns of the Akilia Association suite (except for one probably genuine magnetite-rich BIF from Ugpik) are inconsistent with a seawater origin. We agree with published geological and geochemical (including REE) work [Science 296 (2002) 1448] that most of the analysed Akilia rocks are not chemical sediments, and that C-isotopes in such rocks therefore cannot be used as biological proxies. Application of the REE + Y discriminant for the above two rock suites has been facilitated in this study by the use of MC-ICP technique which yields a more complete and precise REE + Y spectrum than was available in many previous studies. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present high-spatial resolution secondary ion mass spectrometry (SIMS) measurements of Pb and S isotopes in sulphides from early Archaean samples at two localities in southwest Greenland. Secondary pyrite from a 3.71 Ga sample of magnetite-quartz banded iron formation in the Isua Greenstone Belt, which has previously yielded unradiogenic Pb consistent with its ancient origin, contains sulphur with a mass independently fractionated (MIF) isotope signature (Delta(33)S =+3.3 parts per thousand). This reflects the secondary mineralization of remobilized sedimentary S carrying a component modified by photochemical reactions in the early Archaean atmosphere. It further represents one of the most extreme positive excursions so far known from the early Archaean rock record. Sulphides from a quartz-pyroxene rock and an ultramafic boudin from the island of Akilia, in the Godth (a) over circle bsfjord, have heterogeneous and generally radiogenic Pb isotopic compositions that we interpret to represent partial re-equilibration of Pb between the sulphides and whole rocks during tectonothermal events at 3.6, 2.7 and 1.6 Ga. Both these samples have Delta(33)S=0 (within analytical error) and therefore show no evidence for MIF sulphur. These data are consistent with previous interpretations that the rock cannot be proven to have a sedimentary origin. Our study illustrates that SIMS S-isotope measurements in ancient rocks can be used to elucidate early atmospheric parameters because of the ability to obtain combined S and Pb-isotope data, but caution must be applied when using such data to infer protolith. When information from geological context, petrography and chronology (i.e. by Pb isotopes) is combined and fully evaluated, Delta(33)S signatures from sulphides and their geological significance can be interpreted with a higher degree of confidence. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.
Resumo:
The Priestlaw and Cockburn Law intrusions are zoned granitoid plutons intruded into Lower Palaeozoic sediments at the margin of, and prior to closure of, the Iapetus Ocean. They vary from marginal basic rocks to more acid rocks towards their centres. The parental magmas to the plutons were derived from an isotopically depleted mantle modified by melts/fluids during subduction. Zonation in the plutons was caused by combined assimilation and fractional crystallisation (AFC), and rates of assimilation were low relative to rates of fractionation. A series of pyroxene-mica diorites in Priestlaw are however hybrids formed by simple mixing. Porphyrite-acid porphyrite dykes, associated with the plutons, represent chilled portions of the pluton magmas; more evolved quartz porphyry dykes represent crustal melts. Lamprophyre dykes have high LILE and LREE abundances and relative depletions of HFS elements, typical of subduction related ultra-potassic magmas. High Mg numbers, Ni and Cr contents and experimental constraints, imply near primary status for the least evolved lamprophyres. Their enrichments in incompatible elements, high La/Nb, La/Yb, Sr and low Nd indicate derivation from a previously metasomatised mantle source. Granitoid plutons and lavas in the northern Southern Uplands have high Nd and low Sr, whereas the younger plutons of the southern Southern Uplands have higher Sr, La/Yb and lower Nd, consistent with derivation from a more enriched source. No plutons however have remained as closed systems. Three magmatic suites are present in southern Scotland: (1) Midland Valley Suite (2) Northern Southern Uplands Suite and (3) Southern Southern Uplands Suite, consistent with previous models indicating northward underthrusting of English lithosphere below the southern Southern Uplands. Further underthrusting of decoupled lithospheric mantle is indicated by the presence of lamorophyres in the eastern Southern Uplands, and took place between 410 Ma and 400 Ma.
Petrologic and geochemical study of crustal xenoliths from Calbuco Volcano, Chile (latitude 41°20ʹS)
Resumo:
Twenty Four samples of xenoliths and country rocks from the 1961 lava flow of Calbuco volcano have been studied. Fourteen samples have been analyzed for major elements and P, Ni, Ba, Cr, V, Zr, Sc, Y, and Sr. Five of these samples were further analyzed for Sm, Nd, Sr, and Pb isotope ratios. Seventeen samples were studied under the microscope and three samples were analyzed by microprobe for their pyroxene compositions. Based on petrographic studies xenoliths were divided into three groups. Fine grained xenoliths (groups I and II) probably formed from metamorphosed MORB-like basalts, whereas coarse grained xenoliths (group III) were apparently derived from cumulate minerals that crystallized from the Calbuco magma. The fine grained xenoliths were probably entrained in magma at intermediate levels of the crust, near the stability limit of amphibole to form pyroxene and plagioclase. In the coarse grained xenoliths amphibole that formed at depth dehydrated as the xenoliths were brought to the surface. The country rocks are apparently unrelated to the xenoliths.
Resumo:
Up to 2.3 m long sediment sequences were recovered from the deepest part of Lake Hoare in Taylor Valley, southern Victoria Land, Antarctica. Sedimentological, biogeochemical, and mineralogical analyses revealed a high spatial variability of these parameters in Lake Hoare. Five distinct lithological units were recognized. Radiocarbon dating of bulk organic carbon samples from the sediment sequences yielded apparently too old ages and significant age reversals, which prevented the establishment of reliable age-depth models. However, cross correlation of the sedimentary characteristics with those of sediment records from neighbouring Lake Fryxell indicates that the lowermost two units of the Lake Hoare sediment sequences were probably deposited during the final phase of proglacial Lake Washburn, which occupied Taylor Valley during the late Pleistocene and early Holocene. High amounts of angular gravel and the absence of fine-grained material imply a complete desiccation with subaerial conditions in the Lake Hoare basin in the middle of the Holocene. The late Holocene (< c. 3300 calendar yr BP) is characterized by the establishment of environmental conditions similar to those existing today. A late Holocene desiccation event, such as proposed in former studies, is not indicated in the sediment sequences recovered.