998 resultados para Postnatal preparation
Resumo:
The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.
Resumo:
Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.
Resumo:
BACKGROUND: Early preparation for renal replacement therapy (RRT) is recommended for patients with advanced chronic kidney disease (CKD), yet many patients initiate RRT urgently and/or are inadequately prepared. METHODS: We conducted audio-recorded, qualitative, directed telephone interviews of nephrology health care providers (n = 10, nephrologists, physician assistants, and nurses) and primary care physicians (PCPs, n = 4) to identify modifiable challenges to optimal RRT preparation to inform future interventions. We recruited providers from public safety-net hospital-based and community-based nephrology and primary care practices. We asked providers open-ended questions to assess their perceived challenges and their views on the role of PCPs and nephrologist-PCP collaboration in patients' RRT preparation. Two independent and trained abstractors coded transcribed audio-recorded interviews and identified major themes. RESULTS: Nephrology providers identified several factors contributing to patients' suboptimal RRT preparation, including health system resources (e.g., limited time for preparation, referral process delays, and poorly integrated nephrology and primary care), provider skills (e.g., their difficulty explaining CKD to patients), and patient attitudes and cultural differences (e.g., their poor understanding and acceptance of their CKD and its treatment options, their low perceived urgency for RRT preparation; their negative perceptions about RRT, lack of trust, or language differences). PCPs desired more involvement in preparation to ensure RRT transitions could be as "smooth as possible", including providing patients with emotional support, helping patients weigh RRT options, and affirming nephrologist recommendations. Both nephrology providers and PCPs desired improved collaboration, including better information exchange and delineation of roles during the RRT preparation process. CONCLUSIONS: Nephrology and primary care providers identified health system resources, provider skills, and patient attitudes and cultural differences as challenges to patients' optimal RRT preparation. Interventions to improve these factors may improve patients' preparation and initiation of optimal RRTs.
Resumo:
Music for Three Stages: Performance Preparation for Opera, Operetta and Recital began as three stand-alone performances: two operas, Albert Herring and Die Fledermaus, as assigned by my opera program, and a recital of music by composers who wrote operas, art songs and non-operatic large-scale works, which I programmed. Upon starting the process of preparing for these three performances, I hypothesized that each would require unique preparation techniques. What I discovered, however, was that instead of each being unique and isolated in preparation, each performance, along with other performances that I had throughout the year, highly informed my approach to each piece. Through the preparation of program notes, included in this dissertation, as well as the musical preparation of each performance, I concluded that preparing for these performances was a long arc over the course of the year, with much give and take among the styles of music and an integrated style of preparation, instead of the individualized preparations that I expected.
Resumo:
Preliminary studies on the long-term effects of prenatal and early postnatal irradiation on the immune response to arsonate were performed using A/J mice. Pregnant mice were irradiated (0·5 Gy, X-rays) or sham-irradiated on a single occasion during gestation (between day 5 and 18 post-conception). Alternatively, newborn mice received the same treatment between day 2 and 7 after birth. Mice were immunized with keyhole limpet haemocyanin-arsonate (KLH-Ars) in adjuvant from 2 months after birth. The levels of specific antibodies to arsonate (anti-Ars) were measured by radioimmunoassay. In addition, the Ars-related cross-reactive idiotype (CRIA) was measured by the haemagglutination technique. In the primary response the titre of anti-Ars was reduced in animals that had been irradiated between day 12 and 15 of gestation. In the second response, in contrast, they had increased levels of anti-Ars. After immunization with KLH-Ars, high levels of CRIA were observed in all groups. However, in mice irradiated 18-20 days after conception the level of CRIA was often much higher than the level of anti-Ars, indicating that a large proportion of the CRIA-positive molecules were not specific for Ars. Thus, in this particular case, some specificity of the immune response was lost after irradiation. The expression of recurrent idiotypes may be a sensitive indicator of immunological perturbations after irradiation. © 1988 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.
Resumo:
The separation of red blood cells from plasma flowing in microchannels is possible by bio-physical effects such as an axial migration effect and Zweifach-Fung bifurcation law. In the present study, subchannels are placed alongside a main channel to collect cells and plasma separately. The addition of a constriction in the main microchannel creates a local high shear force region, forcing the cells to migrate and concentrate towards the centre of the channel. The resulting lab-on-a-chip was manufactured using biocompatible materials. Purity efficiency was measured for mussel and human blood suspensions as different parameters including flow rate and geometries of parent and daughter channels were varied.
Resumo:
This chapter contains sections titled: - Introduction - Microgel preparation - Characterisation of microgels - Properties and applications - Conclusions
Resumo:
The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.
Resumo:
A novel phosphoramidite; N,N-diisopropylamino-2-cyanoethyl-ortho-methylbenzylphosphoramidite 1, was prepared. The reaction of 1 with DMTrT and subsequent derivatisation of the phosphite triester product under solution-phase, Michaelis–Arbuzov conditions was investigated. Coupling of 1 with the terminal hydroxyl groups of support-bound oligodeoxyribonucleotides and subsequent reaction with an activated disulfide yielded oligonucleotides bearing a terminal, phosphorothiolate-linked, lipophilic moiety. The oligomers were readily purified using RP-HPLC. Silver(I)-mediated cleavage of the phosphorothiolate linkage and desalting of the oligonucleotides were performed readily in one step to yield cleanly the corresponding phosphate monester-terminated oligomers.