949 resultados para Polymorphism, Single Nucleotide


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To assess the association of CYP2B6 allelic diversity with efavirenz (EFV) pharmacokinetics, we performed extensive genotyping of 15 relevant single nucleotide polymorphism in 169 study participants, and full resequencing of CYP2B6 in individuals with abnormal EFV plasma levels. Seventy-seven (45.5%) individuals carried a known (CYP2B6*6, *11, *15, or *18) or new loss/diminished-function alleles. Resequencing defined two new loss-of-function alleles: allele *27 (marked by 593T>C [M198T]), that results in 85% decrease in enzyme activity and allele *28 (marked by 1132C>T), that results in protein truncation at arginine 378. Median AUC levels were 188.5 microg h/ml for individuals homozygous for a loss/diminished-function allele, 58.6 microg h/ml for carriers, and 43.7 microg h/ml for noncarriers (P<0.0001). Individuals with a poor metabolizer genotype had a likelihood ratio of 35 (95% CI, 11-110) of presenting very high EFV plasma levels. CYP2B6 poor metabolizer genotypes explain to a large extent EFV pharmacokinetics and identify individuals at risk of extremely elevated EFV plasma levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: The human immunodeficiency virus protease inhibitor nelfinavir is substrate of polyspecific drug transporters encoded by ABCB1 (P-glycoprotein), ABCC1 (MRP1) and ABCC2 (MRP2), and an inhibitor of BCRP, encoded by ABCG2. Genetic polymorphism in these genes may be associated with changes in transport function. METHODS: A comprehensive evaluation of single nucleotide polymorphisms (39 SNPs in ABCB1, 7 in ABCC1, 27 in ABCC2, and 16 in ABCG2), and inferred haplotypes was done to assess possible associations of genetic variants with cellular exposure of nelfinavir in vivo. Analysis used peripheral mononuclear cells from individuals receiving nelfinavir (n=28). Key results were re-examined in a larger sample size (n=129) contributing data on plasma drug levels. RESULTS AND CONCLUSIONS: There was no significant association between cellular nelfinavir area under the curve (AUC) and SNPs or haplotypes at ABCC1, ABCC2, ABCG2. There was an association with cellular exposure for two loci in strong linkage disequilibrium: ABCB1 3435C>T; AUCTT>AUCCT>AUCCC (ratio 2.1, 1.4, 1, Ptrend=0.01), and intron 26 +80T>C; AUCCC> AUCCT > AUCTT (ratio 2.4, 1.3, 1, Ptrend=0.006). Haplotypic analysis using tagging SNPs did not improve the single SNP association values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Macrophage migration inhibitory factor (MIF) plays an important regulatory role in sepsis. In the promoter region a C/G single nucleotide polymorphism (SNP) at position -173 (rs755622) and a CATT5-8 microsatellite at position -794 are related to modified promoter activity. The purpose of the study was to analyze their association with the incidence and outcome of severe sepsis. METHODS: Genotype distributions and allele frequencies in 169 patients with severe sepsis, 94 healthy blood donors and 183 postoperative patients without signs of infection or inflammation were analyzed by real time PCR and Sequence analysis. All included individuals were Caucasians. RESULTS: Genotype distribution and allele frequencies of severe sepsis patients were comparable to both control groups. However, the genotype and allele frequencies of both polymorphisms were associated significantly with the outcome of severe sepsis. The highest risk of dying from severe sepsis was detectable in patients carrying a haplotype with the alleles -173 C and CATT7 (p = 0.0005, fisher exact test, RR = 1,806, CI: 1.337 to 2.439). CONCLUSION: The haplotype with the combination of the -173 C allele and the -794 CATT7 allele may not serve as a marker for susceptibility to sepsis, but may help identify septic patients at risk of dying.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cichlid fishes have evolved tremendous morphological and behavioral diversity in the waters of East Africa. Within each of the Great Lakes Tanganyika, Malawi, and Victoria, the phenomena of hybridization and retention of ancestral polymorphism explain allele sharing across species. Here, we explore the sharing of single nucleotide polymorphisms (SNPs) between the major East African cichlid assemblages. A set of approximately 200 genic and nongenic SNPs was ascertained in five Lake Malawi species and genotyped in a diverse collection of 160 species from across Africa. We observed segregating polymorphism outside of the Malawi lineage for more than 50% of these loci; this holds similarly for genic versus nongenic SNPs, as well as for SNPs at putative CpG versus non-CpG sites. Bayesian and principal component analyses of genetic structure in the data demonstrate that the Lake Malawi endemic flock is not monophyletic and that river species have likely contributed significantly to Malawi genomes. Coalescent simulations support the hypothesis that river cichlids have transported polymorphism between lake assemblages. We observed strong genetic differentiation between Malawi lineages for approximately 8% of loci, with contributions from both genic and nongenic SNPs. Notably, more than half of these outlier loci between Malawi groups are polymorphic outside of the lake. Cichlid fishes have evolved diversity in Lake Malawi as new mutations combined with standing genetic variation shared across East Africa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glutathione S-transferase (GST) genes detoxify and metabolize carcinogens, including oxygen free radicals which may contribute to salivary gland carcinogenesis. This cancer center-based case-control association study included 166 patients with incident salivary gland carcinoma (SGC) and 511 cancer-free controls. We performed multiplex polymerase chain reaction-based polymorphism genotyping assays for GSTM1 and GSTT1 null genotypes. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with multivariable logistic regression analyses adjusted for age, sex, ethnicity, tobacco use, family history of cancer, alcohol use and radiation exposure. In our results, 27.7% of the SGC cases and 20.6% of the controls were null for the GSTT1 (P = 0.054), and 53.0% of the SGC cases and 50.9% of the controls were null for the GSTM1 (P = 0.633). The results of the adjusted multivariale regression analysis suggested that having GSTT1 null genotype was associated with a significantly increased risk for SGC (odds ratio 1.5, 95% confidence interval 1.0-2.3). Additionally, 13.9% of the SGC cases but only 8.4% of the controls were null for both genes and the results of the adjusted multivariable regression analysis suggested that having both null genotypes was significantly associated with an approximately 2-fold increased risk for SGC (odds ratio 1.9, 95% confidence interval 1.0-3.5). The presence of GSTT1 null genotype and the simultaneous presence of GSTM1 and GSTT1 null genotypes appear associated with significantly increased SGC risk. These findings warrant further study with larger sample sizes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Recently, genetic variations in MICA (lead single nucleotide polymorphism [SNP] rs2596542) were identified by a genome-wide association study (GWAS) to be associated with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) in Japanese patients. In the present study, we sought to determine whether this SNP is predictive of HCC development in the Caucasian population as well. METHODS: An extended region around rs2596542 was genotyped in 1924 HCV-infected patients from the Swiss Hepatitis C Cohort Study (SCCS). Pair-wise correlation between key SNPs was calculated both in the Japanese and European populations (HapMap3: CEU and JPT). RESULTS: To our surprise, the minor allele A of rs2596542 in proximity of MICA appeared to have a protective impact on HCC development in Caucasians, which represents an inverse association as compared to the one observed in the Japanese population. Detailed fine-mapping analyses revealed a new SNP in HCP5 (rs2244546) upstream of MICA as strong predictor of HCV-related HCC in the SCCS (univariable p=0.027; multivariable p=0.0002, odds ratio=3.96, 95% confidence interval=1.90-8.27). This newly identified SNP had a similarly directed effect on HCC in both Caucasian and Japanese populations, suggesting that rs2244546 may better tag a putative true variant than the originally identified SNPs. CONCLUSIONS: Our data confirms the MICA/HCP5 region as susceptibility locus for HCV-related HCC and identifies rs2244546 in HCP5 as a novel tagging SNP. In addition, our data exemplify the need for conducting meta-analyses of cohorts of different ethnicities in order to fine map GWAS signals.