897 resultados para Plastic Injection Molding
Resumo:
This research project aimed to conduct a strategic analysis of the implementation of a supervised injecting facility (SIF) in Montérégie. Using a mixed design, we first completed a portrait of the injection drug user (IDU) population. We then explored the perceptions of IDU and stakeholders with regard to the relevance of implementing a SIF in the region. Although some similarities were found with the IDU populations of Montreal and the province of Quebec, this population in Montérégie is characterized by a lower frequency of injections in public, less homeless people and lower rates of HIV and HCV infections. Despite these differences, the IDU population in Montérégie was found to have important physical and psychosocial needs. Although the relevance of a SIF in Montérégie is undeniable, improvements regarding the accessibility, continuity and appreciation of the actual services dedicated to IDU remain a priority.
Resumo:
Selected grades of low density polyethylene (LDPE) polystyrene (PS) were extruded in a laboratory extruder by varying the feeding rate at different revolutions per minute and temperatures. The mechanical properties of the extruded plastic sheets were determined. LDPE shows a marked variation in mechanical properties with feeding rate while PS shows a marginal change in mechanical properties with feeding rate. However, for both plastics there is a particular feeding rate in the starved region which results in maximum mechanical properties.
Resumo:
The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.
Resumo:
School of Management Studies, Cochin University of Science and Technology
Resumo:
At this era of energy crisis and resource depletion, availability of conventional materials throughout the year in quantity and quality, pose a hectic problem for the builders. Adding fuel to the fire, the demand of these materials increases day by day, since the housing and habitat requirements exponentially increase time to time. There is an international concern over this crisis and researchers are reorienting themselves, so as to evolve appropriate masonry units, using locally available cheap materials and technology. The concept of green material and construction has been well conceived in the research so that marginal materials and unskilled labour can be employed for the mass production of building blocks. In this context, considering earth as a sustainable material, there is a growing interest in the use of it, as a modern construction material. Solid waste management is one of the current major environmental concerns in our country. Our country is left with millions of cubic metre of waste plastics. One of the methods to satisfactorily address this solid waste management and the environmental issues is to suitably accommodate the waste in some form (as fibres). Their employability in block making in the form of fibres (plastic fibre- mud blocks) can be investigated through a fundamental research. Also, the review of the existing literature shows that most studies on natural fibres are focussed on cellulose based/ vegetable fibres obtained from renewable plant resources except in very few cases, where animal fibre, plastic fibre and polystyrene fabric were used. At this context, for the plastic fibre-mud blocks to be more widely applicable, a systematic quantification of the relevant physical and mechanical properties of the fibre masonry units is crucial, to enable an objective evaluation of the composite material’s response to actual field condition. This research highlights the salient observations from the detailed investigation of a systematic study on the effect of embedded fibres, made of plastic wastes on the performance of stabilised mud blocks.
Resumo:
The present study investigates the benefits of stabilizing the stone mastic asphalt (SMA) mixture in flexible pavement with shredded waste plastic. Conventional (without plastic) and the stabilized SMA mixtures were subjected to performance tests including Marshall Stability, tensile strength and compressive strength tests. Triaxial tests were also conducted with varying percentage bitumen by weight of mineral aggregate (6% to 8%) and by varying percentage plastic by weight of mix (6% to 12% with an increment of 1%). Plastic content of 10% by weight of bitumen is recommended for the improvement of the performance of Stone Mastic Asphalt mixtures. 10% plastic content gives an increase in the stability, split tensile strength and compressive strength of about 64%, 18% and 75% respectively compared to the conventional SMA mix. Triaxial test results show a 44% increase in cohesion and 3% decrease in angle of shearing resistance showing an increase in the shear strength. The drain down value decreases with an increase in plastic content and the value is only 0.09 % at 10% plastic content and proves to be an effective stabilizing additive in SMA mixtures
Resumo:
Almost everyone sketches. People use sketches day in and day out in many different and heterogeneous fields, to share their thoughts and clarify ambiguous interpretations, for example. The media used to sketch varies from analog tools like flipcharts to digital tools like smartboards. Whereas analog tools are usually affected by insufficient editing capabilities like cut/copy/paste, digital tools greatly support these scenarios. Digital tools can be grouped into informal and formal tools. Informal tools can be understood as simple drawing environments, whereas formal tools offer sophisticated support to create, optimize and validate diagrams of a certain application domain. Most digital formal tools force users to stick to a concrete syntax and editing workflow, limiting the user’s creativity. For that reason, a lot of people first sketch their ideas using the flexibility of analog or digital informal tools. Subsequently, the sketch is "portrayed" in an appropriate digital formal tool. This work presents Scribble, a highly configurable and extensible sketching framework which allows to dynamically inject sketching features into existing graphical diagram editors, based on Eclipse GEF. This allows to combine the flexibility of informal tools with the power of formal tools without any effort. No additional code is required to augment a GEF editor with sophisticated sketching features. Scribble recognizes drawn elements as well as handwritten text and automatically generates the corresponding domain elements. A local training data library is created dynamically by incrementally learning shapes, drawn by the user. Training data can be shared with others using the WebScribble web application which has been created as part of this work.
Resumo:
A novel process based on the principle of layered photolithography has been proposed and tested for making real three-dimensional micro-structures. An experimental setup was designed and built for doing experiments on this micro-fabrication process. An ultraviolet (UV) excimer laser at the wavelength of 248 nm was used as the light source and a single piece of photo-mask carrying a series of two dimensional (2D) patterns sliced from a three dimensional (3D) micro-part was employed for the photolithography process. The experiments were conducted on the solidification of liquid photopolymer from single layer to multiple layers. The single-layer photolithography experiments showed that certain photopolymers could be applied for the 3D micro-fabrication, and solid layers with sharp shapes could be formed from the liquid polymer identified. By using a unique alignment technique, multiple layers of photolithography was successfully realized for a micro-gear with features at 60 microns. Electroforming was also conducted for converting the photopolymer master to a metal cavity of the micro-gear, which proved that the process is feasible for micro-molding.
Resumo:
This report demonstrates a UV-embossed polymeric chip for protein separation and identification by Capillary Isoelectric Focusing (CIEF) and Matrix Assisted Laser Desportion/Ionization Mass Spectrometry (MALDI-MS). The polymeric chip has been fabricated by UV-embossing technique with high throughput; the issues in the fabrication have been addressed. In order to achieve high sensitivity of mass detection, five different types of UV curable polymer have been used as sample support to perform protein ionization in Mass Spectrometry (MS); the best results is compared to PMMA, which was the commonly used plastic chip for biomolecular separation. Experimental results show that signal from polyester is 12 times better than that of PMMA in terms of detection sensitivity. Finally, polyester chip is utilized to carry out CIEF to separate proteins, followed by MS identification.
Revisión sistemática de la literatura: efecto de los rellenos inyectables en la región periorbitaria
Resumo:
Introducción: El conocimiento actual de la fisiopatología del envejecimiento periorbitario justifica la aplicación de materiales de relleno inyectables, dado que se enfocan en la restauración del volumen perdido en esta zona, convirtiéndose en una excelente alternativa a procedimientos quirúrgicos que remueven el tejido excedente. Sin embargo los efectos y la seguridad de esta naciente tendencia terapéutica aún no se sustentan en una sólida base científica. El objetivo de esta revisión es identificar el material de relleno inyectable más adecuado para el manejo de los defectos volumétricos estéticos de la región periorbitaria. Metodología: Se realizó una búsqueda exhaustiva de los artículos indexados publicados del 1º de enero de 2.000 al 30 de septiembre de 2.013, en diversas bases de datos electrónicas, se seleccionaron catorce publicaciones, se extrajo la información referente a datos demográficos, la intervención, el seguimiento y los desenlaces y se realizó un análisis de 14 estudios que cumplieron los criterios. Resultados: Todos los artículos incluidos poseían un bajo nivel de evidencia y del grado de recomendación. Todos los materiales de relleno se asociaron a altos niveles de satisfacción para el paciente, adecuada mejoría de la apariencia estética y similares efectos colaterales, el ácido hialurónico fue el material de relleno inyectable más utilizado en la región periorbitaria. Discusión: Los materiales de relleno inyectable mejoran los defectos volumétricos estéticos de la región periorbitaria pero es necesaria mayor evidencia para determinar el tipo relleno más apropiado para esta condición.
Resumo:
Introducción: En la actualidad se están implementando nuevas técnicas, para el tratamiento de líneas de expresión facial. El Plasma Rico en Plaquetas (PRP) utiliza factores de crecimiento humano autólogos con fines médicos estéticos. El objetivo de este trabajo fue evaluar el tratamiento con plasma rico en plaquetas en el manejo del rejuvenecimiento periocular. Materiales y métodos: Estudio descriptivo retrospectivo en una cohorte de 27 pacientes entre 30 a 70 años de ambos sexos,tratados con PRP sin tratamientos médicos estéticos previos . Se compararon fotografías del sistema VISIA®, previo y posterior el PRP, para determinar los cambios del área periocular. Con análisis comparativo de medias utilizando pruebas t de student. Resultados: De 27 historias clínicas revisadas 96,3% eran mujeres, la edad promedio fue de 52.67 años. Se observaron cambios clínicos satisfactorios en el manejo del foto envejecimiento periocular con mejoría estadísticamente significativa entre el promedio inicial y el post tratamiento en arrugas, textura y porfirinas (p: 0.000). No se observaron diferencias estadísticamente significativas entre los grupos de edad (p = 0,62). Los pacientes analizados posterior al tratamiento se encuentran en mejor estado que el 63,78% de la población de su mismo sexo, edad y fototipo de piel. Los eventos adversos fueron disminuyendo en su frecuencia en cada una de las sesiones siguientes. Discusión: El PRP proporciona una mejoría global en los parámetros de envejecimiento periocular lo cual se correlaciono con los estudios previos in vitro. Conclusiones: El PRP es seguro y eficaz en contorno de ojos.
Resumo:
This series of experiments attempted to characterize the abilities of stem cells derived from bone marrow and adipose tissue to integrate into the sensory epithelium of the inner ear and to differentiate into hair cells or neural cell types.
Resumo:
Reaction Injection Moulding (RIM) is a moulding technology used for the production of large size and complex plastic parts. The RIM process is characterized essentially by the injection of a highly reactive chemical system (usually polyurethane) and fast cure, in a mould properly closed and thermally controlled. Several studies show that rapid manufacturing moulds obtained in epoxy resins for Thermoplastic Injection Moulding (TIM) affect the moulding process and the final properties of parts. The cycle time and mechanical properties of final parts are reduced, due to a low thermal conductivity of epoxy materials. In contrast, the low conductivity of materials usually applied for the rapid manufacturing of RIM moulds, increase the mechanical properties of final injected parts and reduce the cycle time. This study shows the effect of the rapid manufacturing moulds material during the RIM process. Several materials have been tested for rapid manufacturing of RIM moulds and the analysis of both, temperature profile of moulded parts during injection and the cure data experimentally obtained in a mixing and reaction cell, allow to determine and model the real effect of the mould material on the RIM process.